메뉴 건너뛰기




Volumn 74, Issue 16, 2011, Pages 2413-2421

TROP-ELM: A double-regularized ELM using LARS and Tikhonov regularization

Author keywords

ELM; LARS; OP ELM; Regularization; Ridge regression; Tikhonov regularization

Indexed keywords

ELM; LARS; OP-ELM; REGULARIZATION; RIDGE REGRESSION; TIKHONOV REGULARIZATION;

EID: 80051671932     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.12.042     Document Type: Article
Times cited : (213)

References (35)
  • 1
    • 0016029778 scopus 로고
    • The relationship between variable selection and data augmentation and a method for prediction
    • David M.A. The relationship between variable selection and data augmentation and a method for prediction. Technometrics 1974, 16(1):125-127.
    • (1974) Technometrics , vol.16 , Issue.1 , pp. 125-127
    • David, M.A.1
  • 2
    • 0016963035 scopus 로고
    • Minimax estimation of a multivariate normal mean under arbitrary quadratic loss
    • Berger J. Minimax estimation of a multivariate normal mean under arbitrary quadratic loss. Journal of Multivariate Analysis 1976, 6(2):256-264.
    • (1976) Journal of Multivariate Analysis , vol.6 , Issue.2 , pp. 256-264
    • Berger, J.1
  • 4
    • 80051668648 scopus 로고    scopus 로고
    • LIBSVM: a library for support vector machines, Software available at
    • C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, Software available at 〈〉, 2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2001)
    • Chang, C.-C.1    Lin, C.-J.2
  • 5
    • 67650463106 scopus 로고    scopus 로고
    • Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM '09, March 30th-April 2nd 2009
    • W. Deng, Q. Zheng, L. Chen, Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM '09, March 30th-April 2nd 2009, pp. 389-395.
    • Deng, W.1    Zheng, Q.2    Chen, L.3
  • 7
    • 68949200808 scopus 로고    scopus 로고
    • Error minimized extreme learning machine with growth of hidden nodes and incremental learning
    • Feng G., Huang G.-B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Transactions on Neural Networks 2009, 20(8):1352-1357.
    • (2009) IEEE Transactions on Neural Networks , vol.20 , Issue.8 , pp. 1352-1357
    • Feng, G.1    Huang, G.-B.2    Lin, Q.3    Gay, R.4
  • 8
    • 80051665274 scopus 로고    scopus 로고
    • UCI machine learning repository
    • A. Frank, A. Asuncion, UCI machine learning repository, 2010. http://archive.ics.uci.edu/ml.
    • (2010)
    • Frank, A.1    Asuncion, A.2
  • 9
    • 32044449925 scopus 로고
    • Generalized cross-validation as a method for choosing a good ridge parameter
    • Golub G.H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21(2):215-223.
    • (1979) Technometrics , vol.21 , Issue.2 , pp. 215-223
    • Golub, G.H.1    Heath, M.2    Wahba, G.3
  • 10
    • 80051664706 scopus 로고    scopus 로고
    • EIML Group. The op-elm toolbox, Available online at
    • EIML Group. The op-elm toolbox, Available online at, 2009. http://www.cis.hut.fi/projects/eiml/research/downloads/op-elm-toolbox.
    • (2009)
  • 13
    • 0002161961 scopus 로고
    • Application of ridge analysis to regression problems
    • Hoerl A.E. Application of ridge analysis to regression problems. Chemical Engineering Progress 1962, 58:54-59.
    • (1962) Chemical Engineering Progress , vol.58 , pp. 54-59
    • Hoerl, A.E.1
  • 14
    • 34548158996 scopus 로고    scopus 로고
    • Convex incremental extreme learning machine
    • ISSN 0925-2312
    • Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70(16-18):3056-3062. ISSN 0925-2312.
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 3056-3062
    • Huang, G.-B.1    Chen, L.2
  • 15
    • 56549090053 scopus 로고    scopus 로고
    • Enhanced random search based incremental extreme learning machine
    • ISSN 0925-2312
    • Huang G.-B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71(16-18):3460-3468. ISSN 0925-2312.
    • (2008) Neurocomputing , vol.71 , Issue.16-18 , pp. 3460-3468
    • Huang, G.-B.1    Chen, L.2
  • 17
    • 33745918399 scopus 로고    scopus 로고
    • Universal approximation using incremental constructive feedforward networks with
    • Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with. IEEE Transactions on Neural Networks 2005, 17:879-892.
    • (2005) IEEE Transactions on Neural Networks , vol.17 , pp. 879-892
    • Huang, G.-B.1    Chen, L.2    Siew, C.-K.3
  • 19
    • 33745903481 scopus 로고    scopus 로고
    • Extreme learning machine: theory and applications
    • Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
    • (2006) Neurocomputing , vol.70 , Issue.1-3 , pp. 489-501
    • Huang, G.-B.1    Zhu, Q.-Y.2    Siew, C.-K.3
  • 20
    • 78650310346 scopus 로고    scopus 로고
    • Constructive hidden nodes selection of extreme learning machine for regression
    • Lan Y., Soh Y.C., Huang G.-B. Constructive hidden nodes selection of extreme learning machine for regression. Neurocomputing 2010, 73(16-18):3191-3199.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3191-3199
    • Lan, Y.1    Soh, Y.C.2    Huang, G.-B.3
  • 22
    • 84887010852 scopus 로고    scopus 로고
    • A methodology for building regression models using extreme learning machine: OP-ELM, in: M. Verleysen (Ed.), ESANN 2008, European Symposium on Artificial Neural Networks, Bruges, Belgium, d-side publ, (Evere, Belgium), 23-25 April
    • Y. Miche, P. Bas, C. Jutten, O. Simula, A. Lendasse, A methodology for building regression models using extreme learning machine: OP-ELM, in: M. Verleysen (Ed.), ESANN 2008, European Symposium on Artificial Neural Networks, Bruges, Belgium, d-side publ, (Evere, Belgium), 23-25 April 2008, pp. 247-252.
    • (2008) , pp. 247-252
    • Miche, Y.1    Bas, P.2    Jutten, C.3    Simula, O.4    Lendasse, A.5
  • 23
    • 58849132454 scopus 로고    scopus 로고
    • OP-ELM: theory, experiments and a toolbox, in: R. Neruda, V. Kurková, J. Koutník (Eds.), LNCS-Artificial Neural Networks-ICANN 2008-Part I, Lecture Notes in Computer Science, Springer Berlin/Heidelberg, September
    • Y. Miche, A. Sorjamaa, A. Lendasse, OP-ELM: theory, experiments and a toolbox, in: R. Neruda, V. Kurková, J. Koutník (Eds.), LNCS-Artificial Neural Networks-ICANN 2008-Part I, Lecture Notes in Computer Science, vol. 5163, Springer Berlin/Heidelberg, September 2008, pp.145-154.
    • (2008) , pp. 145-154
    • Miche, Y.1    Sorjamaa, A.2    Lendasse, A.3
  • 25
    • 0000238336 scopus 로고
    • A simplex method for function minimization
    • Nelder J.A., Mead R. A simplex method for function minimization. The Computer Journal 1965, 7(4):308-313.
    • (1965) The Computer Journal , vol.7 , Issue.4 , pp. 308-313
    • Nelder, J.A.1    Mead, R.2
  • 26
    • 80051672747 scopus 로고    scopus 로고
    • A robust hybrid of lasso and ridge regression, Technical Report, Stanford University
    • A.B. Owen, A robust hybrid of lasso and ridge regression, Technical Report, Stanford University, 2006.
    • (2006)
    • Owen, A.B.1
  • 29
    • 33646231022 scopus 로고    scopus 로고
    • Multiresponse sparse regression with application to multidimensional scaling, in: International Conference on Artificial Neural Networks (ICANN), Lecture Notes in Computer Science, Warsaw, Poland, 11-15 September
    • T. Similä, J. Tikka, Multiresponse sparse regression with application to multidimensional scaling, in: International Conference on Artificial Neural Networks (ICANN), Lecture Notes in Computer Science, vol. 3697, Warsaw, Poland, 11-15 September 2005, pp. 97-102.
    • (2005) , pp. 97-102
    • Similä, T.1    Tikka, J.2
  • 30
    • 80051666748 scopus 로고
    • Ridge regression, minimax estimation, and empirical bayes methods, Technical Report 28, Division of Biostatistics, Stanford University
    • R.A. Thisted, Ridge regression, minimax estimation, and empirical bayes methods, Technical Report 28, Division of Biostatistics, Stanford University, 1976.
    • (1976)
    • Thisted, R.A.1
  • 32
    • 0001300994 scopus 로고
    • Solution of incorrectly formulated problems and the regularization method
    • Tychonoff A.N. Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics 1963, 4:1035-1038.
    • (1963) Soviet Mathematics , vol.4 , pp. 1035-1038
    • Tychonoff, A.N.1
  • 33
    • 79958181023 scopus 로고    scopus 로고
    • Random search enhancement of error minimized extreme learning machine, in: M. Verleysen (Ed.), European Symposium on Artificial Neural Networks (ESANN) 2010, d-side Publications, Bruges, Belgium, April 28-30th
    • L. Yuan, S. Yeng Chai, G.-B. Huang, Random search enhancement of error minimized extreme learning machine, in: M. Verleysen (Ed.), European Symposium on Artificial Neural Networks (ESANN) 2010, d-side Publications, Bruges, Belgium, April 28-30th 2010, pp. 327-332.
    • (2010) , pp. 327-332
    • Yuan, L.1    Yeng Chai, S.2    Huang, G.-B.3
  • 34
    • 69949155103 scopus 로고    scopus 로고
    • Grouped and hierarchical model selection through composite absolute penalties
    • Zhao P., Rocha G.V., Yu B. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics 2009, 37(6A):3468-3497.
    • (2009) Annals of Statistics , vol.37 , Issue.6 , pp. 3468-3497
    • Zhao, P.1    Rocha, G.V.2    Yu, B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.