-
1
-
-
0016029778
-
The relationship between variable selection and data augmentation and a method for prediction
-
David M.A. The relationship between variable selection and data augmentation and a method for prediction. Technometrics 1974, 16(1):125-127.
-
(1974)
Technometrics
, vol.16
, Issue.1
, pp. 125-127
-
-
David, M.A.1
-
2
-
-
0016963035
-
Minimax estimation of a multivariate normal mean under arbitrary quadratic loss
-
Berger J. Minimax estimation of a multivariate normal mean under arbitrary quadratic loss. Journal of Multivariate Analysis 1976, 6(2):256-264.
-
(1976)
Journal of Multivariate Analysis
, vol.6
, Issue.2
, pp. 256-264
-
-
Berger, J.1
-
4
-
-
80051668648
-
-
LIBSVM: a library for support vector machines, Software available at
-
C.-C. Chang, C.-J. Lin, LIBSVM: a library for support vector machines, Software available at 〈〉, 2001. http://www.csie.ntu.edu.tw/~cjlin/libsvm.
-
(2001)
-
-
Chang, C.-C.1
Lin, C.-J.2
-
5
-
-
67650463106
-
-
Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM '09, March 30th-April 2nd 2009
-
W. Deng, Q. Zheng, L. Chen, Regularized extreme learning machine, in: IEEE Symposium on Computational Intelligence and Data Mining, CIDM '09, March 30th-April 2nd 2009, pp. 389-395.
-
-
-
Deng, W.1
Zheng, Q.2
Chen, L.3
-
6
-
-
3242708140
-
Least angle regression
-
Efron B., Hastie T., Johnstone I., Tibshirani R. Least angle regression. Annals of Statistics 2004, 32:407-499.
-
(2004)
Annals of Statistics
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
7
-
-
68949200808
-
Error minimized extreme learning machine with growth of hidden nodes and incremental learning
-
Feng G., Huang G.-B., Lin Q., Gay R. Error minimized extreme learning machine with growth of hidden nodes and incremental learning. IEEE Transactions on Neural Networks 2009, 20(8):1352-1357.
-
(2009)
IEEE Transactions on Neural Networks
, vol.20
, Issue.8
, pp. 1352-1357
-
-
Feng, G.1
Huang, G.-B.2
Lin, Q.3
Gay, R.4
-
8
-
-
80051665274
-
-
UCI machine learning repository
-
A. Frank, A. Asuncion, UCI machine learning repository, 2010. http://archive.ics.uci.edu/ml.
-
(2010)
-
-
Frank, A.1
Asuncion, A.2
-
9
-
-
32044449925
-
Generalized cross-validation as a method for choosing a good ridge parameter
-
Golub G.H., Heath M., Wahba G. Generalized cross-validation as a method for choosing a good ridge parameter. Technometrics 1979, 21(2):215-223.
-
(1979)
Technometrics
, vol.21
, Issue.2
, pp. 215-223
-
-
Golub, G.H.1
Heath, M.2
Wahba, G.3
-
10
-
-
80051664706
-
-
EIML Group. The op-elm toolbox, Available online at
-
EIML Group. The op-elm toolbox, Available online at, 2009. http://www.cis.hut.fi/projects/eiml/research/downloads/op-elm-toolbox.
-
(2009)
-
-
-
11
-
-
0003684449
-
-
Springer
-
Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction 2009, Springer. second ed.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
13
-
-
0002161961
-
Application of ridge analysis to regression problems
-
Hoerl A.E. Application of ridge analysis to regression problems. Chemical Engineering Progress 1962, 58:54-59.
-
(1962)
Chemical Engineering Progress
, vol.58
, pp. 54-59
-
-
Hoerl, A.E.1
-
14
-
-
34548158996
-
Convex incremental extreme learning machine
-
ISSN 0925-2312
-
Huang G.-B., Chen L. Convex incremental extreme learning machine. Neurocomputing 2007, 70(16-18):3056-3062. ISSN 0925-2312.
-
(2007)
Neurocomputing
, vol.70
, Issue.16-18
, pp. 3056-3062
-
-
Huang, G.-B.1
Chen, L.2
-
15
-
-
56549090053
-
Enhanced random search based incremental extreme learning machine
-
ISSN 0925-2312
-
Huang G.-B., Chen L. Enhanced random search based incremental extreme learning machine. Neurocomputing 2008, 71(16-18):3460-3468. ISSN 0925-2312.
-
(2008)
Neurocomputing
, vol.71
, Issue.16-18
, pp. 3460-3468
-
-
Huang, G.-B.1
Chen, L.2
-
17
-
-
33745918399
-
Universal approximation using incremental constructive feedforward networks with
-
Huang G.-B., Chen L., Siew C.-K. Universal approximation using incremental constructive feedforward networks with. IEEE Transactions on Neural Networks 2005, 17:879-892.
-
(2005)
IEEE Transactions on Neural Networks
, vol.17
, pp. 879-892
-
-
Huang, G.-B.1
Chen, L.2
Siew, C.-K.3
-
18
-
-
33645007988
-
Can threshold networks be trained directly?
-
ISSN 1549-7747
-
Huang G.-B., Zhu Q.-Y., Mao K.Z., Siew C.-K., Saratchandran P., Sundararajan N. Can threshold networks be trained directly?. IEEE Transactions on Circuits and Systems II: Express Briefs 2006, 53(3):187-191. ISSN 1549-7747.
-
(2006)
IEEE Transactions on Circuits and Systems II: Express Briefs
, vol.53
, Issue.3
, pp. 187-191
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Mao, K.Z.3
Siew, C.-K.4
Saratchandran, P.5
Sundararajan, N.6
-
19
-
-
33745903481
-
Extreme learning machine: theory and applications
-
Huang G.-B., Zhu Q.-Y., Siew C.-K. Extreme learning machine: theory and applications. Neurocomputing 2006, 70(1-3):489-501.
-
(2006)
Neurocomputing
, vol.70
, Issue.1-3
, pp. 489-501
-
-
Huang, G.-B.1
Zhu, Q.-Y.2
Siew, C.-K.3
-
20
-
-
78650310346
-
Constructive hidden nodes selection of extreme learning machine for regression
-
Lan Y., Soh Y.C., Huang G.-B. Constructive hidden nodes selection of extreme learning machine for regression. Neurocomputing 2010, 73(16-18):3191-3199.
-
(2010)
Neurocomputing
, vol.73
, Issue.16-18
, pp. 3191-3199
-
-
Lan, Y.1
Soh, Y.C.2
Huang, G.-B.3
-
21
-
-
22844451535
-
Fully complex extreme learning machine
-
ISSN 0925-2312
-
Li M.-B., Huang G.-B., Saratchandran P., Sundararajan N. Fully complex extreme learning machine. Neurocomputing 2005, 68:306-314. ISSN 0925-2312.
-
(2005)
Neurocomputing
, vol.68
, pp. 306-314
-
-
Li, M.-B.1
Huang, G.-B.2
Saratchandran, P.3
Sundararajan, N.4
-
22
-
-
84887010852
-
-
A methodology for building regression models using extreme learning machine: OP-ELM, in: M. Verleysen (Ed.), ESANN 2008, European Symposium on Artificial Neural Networks, Bruges, Belgium, d-side publ, (Evere, Belgium), 23-25 April
-
Y. Miche, P. Bas, C. Jutten, O. Simula, A. Lendasse, A methodology for building regression models using extreme learning machine: OP-ELM, in: M. Verleysen (Ed.), ESANN 2008, European Symposium on Artificial Neural Networks, Bruges, Belgium, d-side publ, (Evere, Belgium), 23-25 April 2008, pp. 247-252.
-
(2008)
, pp. 247-252
-
-
Miche, Y.1
Bas, P.2
Jutten, C.3
Simula, O.4
Lendasse, A.5
-
23
-
-
58849132454
-
-
OP-ELM: theory, experiments and a toolbox, in: R. Neruda, V. Kurková, J. Koutník (Eds.), LNCS-Artificial Neural Networks-ICANN 2008-Part I, Lecture Notes in Computer Science, Springer Berlin/Heidelberg, September
-
Y. Miche, A. Sorjamaa, A. Lendasse, OP-ELM: theory, experiments and a toolbox, in: R. Neruda, V. Kurková, J. Koutník (Eds.), LNCS-Artificial Neural Networks-ICANN 2008-Part I, Lecture Notes in Computer Science, vol. 5163, Springer Berlin/Heidelberg, September 2008, pp.145-154.
-
(2008)
, pp. 145-154
-
-
Miche, Y.1
Sorjamaa, A.2
Lendasse, A.3
-
24
-
-
73949154686
-
OP-ELM: optimally pruned extreme learning machine
-
Miche Y., Sorjamaa A., Bas P., Simula O., Jutten C., Lendasse A. OP-ELM: optimally pruned extreme learning machine. IEEE Transactions on Neural Networks 2010, 21(1):158-162.
-
(2010)
IEEE Transactions on Neural Networks
, vol.21
, Issue.1
, pp. 158-162
-
-
Miche, Y.1
Sorjamaa, A.2
Bas, P.3
Simula, O.4
Jutten, C.5
Lendasse, A.6
-
25
-
-
0000238336
-
A simplex method for function minimization
-
Nelder J.A., Mead R. A simplex method for function minimization. The Computer Journal 1965, 7(4):308-313.
-
(1965)
The Computer Journal
, vol.7
, Issue.4
, pp. 308-313
-
-
Nelder, J.A.1
Mead, R.2
-
26
-
-
80051672747
-
-
A robust hybrid of lasso and ridge regression, Technical Report, Stanford University
-
A.B. Owen, A robust hybrid of lasso and ridge regression, Technical Report, Stanford University, 2006.
-
(2006)
-
-
Owen, A.B.1
-
29
-
-
33646231022
-
-
Multiresponse sparse regression with application to multidimensional scaling, in: International Conference on Artificial Neural Networks (ICANN), Lecture Notes in Computer Science, Warsaw, Poland, 11-15 September
-
T. Similä, J. Tikka, Multiresponse sparse regression with application to multidimensional scaling, in: International Conference on Artificial Neural Networks (ICANN), Lecture Notes in Computer Science, vol. 3697, Warsaw, Poland, 11-15 September 2005, pp. 97-102.
-
(2005)
, pp. 97-102
-
-
Similä, T.1
Tikka, J.2
-
30
-
-
80051666748
-
-
Ridge regression, minimax estimation, and empirical bayes methods, Technical Report 28, Division of Biostatistics, Stanford University
-
R.A. Thisted, Ridge regression, minimax estimation, and empirical bayes methods, Technical Report 28, Division of Biostatistics, Stanford University, 1976.
-
(1976)
-
-
Thisted, R.A.1
-
32
-
-
0001300994
-
Solution of incorrectly formulated problems and the regularization method
-
Tychonoff A.N. Solution of incorrectly formulated problems and the regularization method. Soviet Mathematics 1963, 4:1035-1038.
-
(1963)
Soviet Mathematics
, vol.4
, pp. 1035-1038
-
-
Tychonoff, A.N.1
-
33
-
-
79958181023
-
-
Random search enhancement of error minimized extreme learning machine, in: M. Verleysen (Ed.), European Symposium on Artificial Neural Networks (ESANN) 2010, d-side Publications, Bruges, Belgium, April 28-30th
-
L. Yuan, S. Yeng Chai, G.-B. Huang, Random search enhancement of error minimized extreme learning machine, in: M. Verleysen (Ed.), European Symposium on Artificial Neural Networks (ESANN) 2010, d-side Publications, Bruges, Belgium, April 28-30th 2010, pp. 327-332.
-
(2010)
, pp. 327-332
-
-
Yuan, L.1
Yeng Chai, S.2
Huang, G.-B.3
-
34
-
-
69949155103
-
Grouped and hierarchical model selection through composite absolute penalties
-
Zhao P., Rocha G.V., Yu B. Grouped and hierarchical model selection through composite absolute penalties. Annals of Statistics 2009, 37(6A):3468-3497.
-
(2009)
Annals of Statistics
, vol.37
, Issue.6
, pp. 3468-3497
-
-
Zhao, P.1
Rocha, G.V.2
Yu, B.3
|