-
1
-
-
27644516456
-
Biotechnological production and applications of phytases
-
Haefner S., Knietsch A., Scholten E., Braun J., Lohscheidt M., Zelder O. Biotechnological production and applications of phytases. Appl. Microbiol. Biotechnol. 2005, 68:588-597.
-
(2005)
Appl. Microbiol. Biotechnol.
, vol.68
, pp. 588-597
-
-
Haefner, S.1
Knietsch, A.2
Scholten, E.3
Braun, J.4
Lohscheidt, M.5
Zelder, O.6
-
2
-
-
67349266576
-
Consequences of calcium interactions with phytate and phytase for poultry and pigs
-
Selle P.H., Aaron J., Cowieson A.J., Ravindran V. Consequences of calcium interactions with phytate and phytase for poultry and pigs. Livestock Sci. 2009, 124:126-141.
-
(2009)
Livestock Sci.
, vol.124
, pp. 126-141
-
-
Selle, P.H.1
Aaron, J.2
Cowieson, A.J.3
Ravindran, V.4
-
3
-
-
0034767777
-
Biotechnological development of effective phytases for mineral nutrition and environmental protection
-
Lei X.G., Stahl C.H. Biotechnological development of effective phytases for mineral nutrition and environmental protection. Appl. Microbiol. Biotechnol. 2001, 57:474-481.
-
(2001)
Appl. Microbiol. Biotechnol.
, vol.57
, pp. 474-481
-
-
Lei, X.G.1
Stahl, C.H.2
-
4
-
-
0033051539
-
Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties
-
Wyss M., Brugger R., Kronenberger A., Remy R., Fimbel R., Oesterhelt G., Lehmann M., van Loon A.P. Biochemical characterization of fungal phytases (myo-inositol hexakisphosphate phosphohydrolases): catalytic properties. Appl. Environ. Microbiol. 1999, 65:367-373.
-
(1999)
Appl. Environ. Microbiol.
, vol.65
, pp. 367-373
-
-
Wyss, M.1
Brugger, R.2
Kronenberger, A.3
Remy, R.4
Fimbel, R.5
Oesterhelt, G.6
Lehmann, M.7
van Loon, A.P.8
-
5
-
-
34547743920
-
A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris
-
Luo H., Huang H., Yang P., Wang Y., Yuan T., Wu N., Yao B., Fan Y. A novel phytase appA from Citrobacter amalonaticus CGMCC 1696: gene cloning and overexpression in Pichia pastoris. Curr. Microbiol. 2007, 55:185-192.
-
(2007)
Curr. Microbiol.
, vol.55
, pp. 185-192
-
-
Luo, H.1
Huang, H.2
Yang, P.3
Wang, Y.4
Yuan, T.5
Wu, N.6
Yao, B.7
Fan, Y.8
-
6
-
-
0039116206
-
Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey
-
Szilágyi A., Závodszky P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 2000, 15:493-504.
-
(2000)
Structure
, vol.15
, pp. 493-504
-
-
Szilágyi, A.1
Závodszky, P.2
-
7
-
-
0242659241
-
Protein thermostability: structure-based difference of residual properties between thermophilic and mesophilic proteins
-
Pack S.P., Yoo Y.J. Protein thermostability: structure-based difference of residual properties between thermophilic and mesophilic proteins. J. Mol. Catal. B: Enzym. 2003, 26:257-264.
-
(2003)
J. Mol. Catal. B: Enzym.
, vol.26
, pp. 257-264
-
-
Pack, S.P.1
Yoo, Y.J.2
-
8
-
-
4544244867
-
Rational engineering of enzyme stability
-
Eijsink V.G., Bjørk A., Gåseidnes S., Sirevåg R., Synstad B., van den Burg B., Vriend G. Rational engineering of enzyme stability. J. Biotechnol. 2004, 113:105-120.
-
(2004)
J. Biotechnol.
, vol.113
, pp. 105-120
-
-
Eijsink, V.G.1
Bjørk, A.2
Gåseidnes, S.3
Sirevåg, R.4
Synstad, B.5
van den Burg, B.6
Vriend, G.7
-
9
-
-
0034017055
-
Factors enhancing protein thermostability
-
Kumar S., Tsai C.J., Nussinov R. Factors enhancing protein thermostability. Protein Eng. 2000, 13:179-191.
-
(2000)
Protein Eng.
, vol.13
, pp. 179-191
-
-
Kumar, S.1
Tsai, C.J.2
Nussinov, R.3
-
10
-
-
0029932580
-
Analysis of protein conformational characteristics related to thermostability
-
Querol E., Perez-Pons J.A., Mozo-Villarias A. Analysis of protein conformational characteristics related to thermostability. Protein Eng. 1996, 9:265-271.
-
(1996)
Protein Eng.
, vol.9
, pp. 265-271
-
-
Querol, E.1
Perez-Pons, J.A.2
Mozo-Villarias, A.3
-
11
-
-
0034802215
-
Hydrogen-bonding classes in proteins and their contribution to the unfolding reaction
-
Ragone R. Hydrogen-bonding classes in proteins and their contribution to the unfolding reaction. Protein Sci. 2001, 10:2075-2082.
-
(2001)
Protein Sci.
, vol.10
, pp. 2075-2082
-
-
Ragone, R.1
-
12
-
-
0029893110
-
Thermozymes: identifying molecular determinants of protein structural and functional stability
-
Vieille C., Zeikus J.G. Thermozymes: identifying molecular determinants of protein structural and functional stability. Trends Biotechnol. 1996, 14:183-190.
-
(1996)
Trends Biotechnol.
, vol.14
, pp. 183-190
-
-
Vieille, C.1
Zeikus, J.G.2
-
13
-
-
0035098779
-
Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability
-
Vieille C., Zeikus G.J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms for thermostability. Microbiol. Mol. Biol. Rev. 2001, 65:1-43.
-
(2001)
Microbiol. Mol. Biol. Rev.
, vol.65
, pp. 1-43
-
-
Vieille, C.1
Zeikus, G.J.2
-
14
-
-
13244249836
-
The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures
-
Yip K.S., Stillman T.J., Britton K.L., Artymiuk P.J., Baker P.J., Sedelnikova S.E., Engel P.C., Pasquo A., Chiaraluce R., Consalvi V. The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures. Structure 1995, 3:1147-1158.
-
(1995)
Structure
, vol.3
, pp. 1147-1158
-
-
Yip, K.S.1
Stillman, T.J.2
Britton, K.L.3
Artymiuk, P.J.4
Baker, P.J.5
Sedelnikova, S.E.6
Engel, P.C.7
Pasquo, A.8
Chiaraluce, R.9
Consalvi, V.10
-
15
-
-
34249909383
-
Configurational entropy elucidates the role of salt-bridge networks in protein thermostability
-
Missimer J.H., Steinmetz M.O., Baron R., Winkler F.K., Kammerer R.A., Daura X., Van Gunsteren W.F. Configurational entropy elucidates the role of salt-bridge networks in protein thermostability. Protein Sci. 2007, 16:1349-1359.
-
(2007)
Protein Sci.
, vol.16
, pp. 1349-1359
-
-
Missimer, J.H.1
Steinmetz, M.O.2
Baron, R.3
Winkler, F.K.4
Kammerer, R.A.5
Daura, X.6
Van Gunsteren, W.F.7
-
16
-
-
1242319481
-
Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperatures
-
Thomas A.S., Elcock A.H. Molecular simulations suggest protein salt bridges are uniquely suited to life at high temperatures. J. Am. Chem. Soc. 2004, 126:2208-2214.
-
(2004)
J. Am. Chem. Soc.
, vol.126
, pp. 2208-2214
-
-
Thomas, A.S.1
Elcock, A.H.2
-
17
-
-
0034673153
-
Contribution of surface salt bridges to protein stability
-
Strop P., Mayo S.L. Contribution of surface salt bridges to protein stability. Biochemistry 2000, 39:1251-1255.
-
(2000)
Biochemistry
, vol.39
, pp. 1251-1255
-
-
Strop, P.1
Mayo, S.L.2
-
18
-
-
4444362321
-
An electrostatic basis for the stability of thermophilic proteins
-
Dominy B.N., Minoux H., Brooks C.L. An electrostatic basis for the stability of thermophilic proteins. Proteins 2004, 57:128-141.
-
(2004)
Proteins
, vol.57
, pp. 128-141
-
-
Dominy, B.N.1
Minoux, H.2
Brooks, C.L.3
-
19
-
-
79959612799
-
Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding
-
Chan C.H., Yu T.H., Wong K.B. Stabilizing salt-bridge enhances protein thermostability by reducing the heat capacity change of unfolding. PLoS One 2011, 6:e21624.
-
(2011)
PLoS One
, vol.6
-
-
Chan, C.H.1
Yu, T.H.2
Wong, K.B.3
-
20
-
-
57649136399
-
Salt bridges in the hyperthermophilic protein Ssh10b are resilient to temperature increases
-
Ge M., Xia X.Y., Pan X.M. Salt bridges in the hyperthermophilic protein Ssh10b are resilient to temperature increases. J. Biol. Chem. 2008, 283:31690-31696.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 31690-31696
-
-
Ge, M.1
Xia, X.Y.2
Pan, X.M.3
-
21
-
-
39449128325
-
Thermostability of salt bridges versus hydrophobic interactions in proteins probed by statistical potentials
-
Folch B., Rooman M., Dehouck Y. Thermostability of salt bridges versus hydrophobic interactions in proteins probed by statistical potentials. J. Chem. Inf. Model. 2008, 48:119-127.
-
(2008)
J. Chem. Inf. Model.
, vol.48
, pp. 119-127
-
-
Folch, B.1
Rooman, M.2
Dehouck, Y.3
-
22
-
-
78650673582
-
Study on the relationship between cyclodextrin glycosyltransferase thermostability and salt bridge formation by molecular dynamics simulation
-
Yi F., Yanrui D., Zhiguo C., Jun S., Wei F., Wenbo X. Study on the relationship between cyclodextrin glycosyltransferase thermostability and salt bridge formation by molecular dynamics simulation. Protein Pept. Lett. 2010, 17:1403-1411.
-
(2010)
Protein Pept. Lett.
, vol.17
, pp. 1403-1411
-
-
Yi, F.1
Yanrui, D.2
Zhiguo, C.3
Jun, S.4
Wei, F.5
Wenbo, X.6
-
23
-
-
0034307020
-
Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris
-
Eric R., Zachary A., Wood P., Andrew K., Xin G.L. Site-directed mutagenesis improves catalytic efficiency and thermostability of Escherichia coli pH 2.5 acid phosphatase/phytase expressed in Pichia pastoris. Arch. Biochem. Biophys. 2000, 382:105-112.
-
(2000)
Arch. Biochem. Biophys.
, vol.382
, pp. 105-112
-
-
Eric, R.1
Zachary, A.2
Wood, P.3
Andrew, K.4
Xin, G.L.5
-
24
-
-
0042415783
-
NAMD2: greater scalability for parallel molecular dynamics
-
Kale L., Skeel R., Bhandarkar M., Brunner R., Gursoy A., Krawetz N., Phillips J., Shinozaki A., Varadarajan K., Schulten K. NAMD2: greater scalability for parallel molecular dynamics. J. Comput. Phys. 1999, 151:283-312.
-
(1999)
J. Comput. Phys.
, vol.151
, pp. 283-312
-
-
Kale, L.1
Skeel, R.2
Bhandarkar, M.3
Brunner, R.4
Gursoy, A.5
Krawetz, N.6
Phillips, J.7
Shinozaki, A.8
Varadarajan, K.9
Schulten, K.10
-
25
-
-
0004016501
-
Comparison of simple potential functions for simulating liquid water
-
Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 1983, 79:926-935.
-
(1983)
J. Chem. Phys.
, vol.79
, pp. 926-935
-
-
Jorgensen, W.L.1
Chandrasekhar, J.2
Madura, J.D.3
Impey, R.W.4
Klein, M.L.5
-
27
-
-
0041784950
-
All-atom empirical potential for molecular modeling and dynamics studies of proteins and nucleic acids
-
other 19 authors
-
MacKerell A.D., Bashford D., Bellott M., Dunbrack R.L., Evanseck J.D., Field M.J., Fischer S., Gao J., Guo H., Ha S., other 19 authors All-atom empirical potential for molecular modeling and dynamics studies of proteins and nucleic acids. J. Phys. Chem. 1998, 102:3586-3616.
-
(1998)
J. Phys. Chem.
, vol.102
, pp. 3586-3616
-
-
MacKerell, A.D.1
Bashford, D.2
Bellott, M.3
Dunbrack, R.L.4
Evanseck, J.D.5
Field, M.J.6
Fischer, S.7
Gao, J.8
Guo, H.9
Ha, S.10
-
28
-
-
33846823909
-
Particle Mesh Ewald: an N log (N) method for Ewald sums in large systems
-
Darden T., York D., Pedersen L. Particle Mesh Ewald: an N log (N) method for Ewald sums in large systems. J. Chem. Phys. 1993, 98:10089-10092.
-
(1993)
J. Chem. Phys.
, vol.98
, pp. 10089-10092
-
-
Darden, T.1
York, D.2
Pedersen, L.3
-
29
-
-
33646940952
-
Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
-
Ryckaert J.P., Ciccotti G., Berendsen H.J.C. Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 1977, 23:327-341.
-
(1977)
J. Comput. Phys.
, vol.23
, pp. 327-341
-
-
Ryckaert, J.P.1
Ciccotti, G.2
Berendsen, H.J.C.3
-
30
-
-
0344289519
-
Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris
-
Han Y.M., Lei X.G. Role of glycosylation in the functional expression of an Aspergillus niger phytase (phyA) in Pichia pastoris. Arch. Biochem. Biophys. 1999, 364:83-90.
-
(1999)
Arch. Biochem. Biophys.
, vol.364
, pp. 83-90
-
-
Han, Y.M.1
Lei, X.G.2
-
31
-
-
0032923801
-
Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae
-
Han Y.M., Wilson D.B., Lei X.G. Expression of an Aspergillus niger phytase gene (phyA) in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 1999, 65:1915-1918.
-
(1999)
Appl. Environ. Microbiol.
, vol.65
, pp. 1915-1918
-
-
Han, Y.M.1
Wilson, D.B.2
Lei, X.G.3
-
32
-
-
85027921848
-
Modifying thermostability of appA from Escherichia coli
-
Zhu W., Qiao D., Huang M., Yang G., Xu H., Cao Y. Modifying thermostability of appA from Escherichia coli. Curr. Microbiol. 2010, 61:267-273.
-
(2010)
Curr. Microbiol.
, vol.61
, pp. 267-273
-
-
Zhu, W.1
Qiao, D.2
Huang, M.3
Yang, G.4
Xu, H.5
Cao, Y.6
-
33
-
-
33845288649
-
Iterative saturation mutagenesis on the basis of b factors as a strategy for increasing protein thermostability
-
Reetz M.T., Carballeira J.D., Vogel A. Iterative saturation mutagenesis on the basis of b factors as a strategy for increasing protein thermostability. Angew. Chem. Int. Ed. 2006, 45:7745-7751.
-
(2006)
Angew. Chem. Int. Ed.
, vol.45
, pp. 7745-7751
-
-
Reetz, M.T.1
Carballeira, J.D.2
Vogel, A.3
|