메뉴 건너뛰기




Volumn 219, Issue 15, 2013, Pages 8042-8056

On shifted Jacobi spectral approximations for solving fractional differential equations

Author keywords

Caputo derivative; Jacobi Gauss Lobatto quadrature; Multi term fractional differential equations; Nonlinear fractional initial value problems; Shifted Jacobi polynomials; Spectral methods

Indexed keywords

CAPUTO DERIVATIVES; FRACTIONAL DIFFERENTIAL EQUATIONS; JACOBI POLYNOMIALS; JACOBI-GAUSS-LOBATTO QUADRATURE; SPECTRAL METHODS;

EID: 84875460922     PISSN: 00963003     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.amc.2013.01.051     Document Type: Article
Times cited : (81)

References (49)
  • 1
    • 84855311505 scopus 로고    scopus 로고
    • Solution to system of partial fractional differential equations using the fractional exponential operators
    • A. Ansari, A. Refahi Sheikhani, and H. Saberi Najafi Solution to system of partial fractional differential equations using the fractional exponential operators Math. Methods Appl. Sci. 35 2012 119 123
    • (2012) Math. Methods Appl. Sci. , vol.35 , pp. 119-123
    • Ansari, A.1    Refahi Sheikhani, A.2    Saberi Najafi, H.3
  • 2
    • 0021439912 scopus 로고
    • On the appearance of the fractional derivative in the behavior of real materials
    • R.L. Bagley, and P.J. Torvik On the appearance of the fractional derivative in the behaviour of real materials J. Appl. Mech. 51 1984 294 298 (Pubitemid 14583152)
    • (1984) Journal of Applied Mechanics, Transactions ASME , vol.51 , Issue.2 , pp. 294-298
    • Torvik, P.J.1    Bagley, R.L.2
  • 3
    • 77953683625 scopus 로고    scopus 로고
    • An existence result for a superlinear fractional differential equation
    • D. Baleanu, O.G. Mustafa, and R.P. Agarwal An existence result for a superlinear fractional differential equation Appl. Math. Lett. 23 2010 1129 1132
    • (2010) Appl. Math. Lett. , vol.23 , pp. 1129-1132
    • Baleanu, D.1    Mustafa, O.G.2    Agarwal, R.P.3
  • 4
    • 78649549013 scopus 로고    scopus 로고
    • On the solution set for a class of sequential fractional differential equations
    • D. Baleanu, O.G. Mustafa, and R.P. Agarwal On the solution set for a class of sequential fractional differential equations J. Phys. A: Math. Theory 43 2010 385209
    • (2010) J. Phys. A: Math. Theory , vol.43 , pp. 385209
    • Baleanu, D.1    Mustafa, O.G.2    Agarwal, R.P.3
  • 6
    • 79961168894 scopus 로고    scopus 로고
    • A quadrature tau method for variable coefficients fractional differential equations
    • A.H. Bhrawy, A.S. Alofi, and S.S. Ezz-Eldien A quadrature tau method for variable coefficients fractional differential equations Appl. Math. Lett. 24 2011 2146 2152
    • (2011) Appl. Math. Lett. , vol.24 , pp. 2146-2152
    • Bhrawy, A.H.1    Alofi, A.S.2    Ezz-Eldien, S.S.3
  • 7
    • 79961027185 scopus 로고    scopus 로고
    • A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations
    • A.H. Bhrawy, and A.S. Alofi A Jacobi-Gauss collocation method for solving nonlinear Lane-Emden type equations Commun. Nonlinear Sci. Numer. Simul. 17 2012 62 70
    • (2012) Commun. Nonlinear Sci. Numer. Simul. , vol.17 , pp. 62-70
    • Bhrawy, A.H.1    Alofi, A.S.2
  • 8
    • 84866686370 scopus 로고    scopus 로고
    • A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals
    • A.H. Bhrawy, and M.A. Alghamdi A shifted Jacobi-Gauss-Lobatto collocation method for solving nonlinear fractional Langevin equation involving two fractional orders in different intervals Boundary Value Prob. 2012 2012 62
    • (2012) Boundary Value Prob. , vol.2012 , pp. 62
    • Bhrawy, A.H.1    Alghamdi, M.A.2
  • 10
    • 77950188013 scopus 로고    scopus 로고
    • Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations
    • J. Deng, and L. Ma Existence and uniqueness of solutions of initial value problems for nonlinear fractional differential equations Appl. Math. Lett. 23 2010 676 680
    • (2010) Appl. Math. Lett. , vol.23 , pp. 676-680
    • Deng, J.1    Ma, L.2
  • 11
    • 3042709180 scopus 로고    scopus 로고
    • Multi-order fractional differential equations and their numerical solutions
    • K. Diethelm, and N.J. Ford Multi-order fractional differential equations and their numerical solutions Appl. Math. Comput. 154 2004 621 640
    • (2004) Appl. Math. Comput. , vol.154 , pp. 621-640
    • Diethelm, K.1    Ford, N.J.2
  • 12
    • 0742271179 scopus 로고    scopus 로고
    • On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials
    • DOI 10.1088/0305-4470/37/3/010, PII S030544700465565X
    • E.H. Doha On the construction of recurrence relations for the expansion and connection coefficients in series of Jacobi polynomials J. Phys. A: Math. Gen. 37 2004 657 675 (Pubitemid 38148936)
    • (2004) Journal of Physics A: Mathematical and General , vol.37 , Issue.3 , pp. 657-675
    • Doha, E.H.1
  • 13
    • 79960555480 scopus 로고    scopus 로고
    • Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations
    • E.H. Doha, A.H. Bhrawy, and S.S. Ezz-Eldien Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations Appl. Math. Modell. 35 2011 5662 5672
    • (2011) Appl. Math. Modell. , vol.35 , pp. 5662-5672
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 14
    • 80052270048 scopus 로고    scopus 로고
    • A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
    • E.H. Doha, A.H. Bhrawy, and S.S. Ezz-Eldien A Chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order Comput. Math. Appl. 62 2011 2364 2373
    • (2011) Comput. Math. Appl. , vol.62 , pp. 2364-2373
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 15
    • 84861893481 scopus 로고    scopus 로고
    • A new Jacobi operational matrix: An application for solving fractional differential equation
    • E.H. Doha, A.H. Bhrawy, and S.S. Ezzeldeen A new Jacobi operational matrix: an application for solving fractional differential equation Appl. Math. Modell. 36 2012 4931 4943
    • (2012) Appl. Math. Modell. , vol.36 , pp. 4931-4943
    • Doha, E.H.1    Bhrawy, A.H.2    Ezzeldeen, S.S.3
  • 18
    • 3543090402 scopus 로고    scopus 로고
    • Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces
    • DOI 10.1016/j.jat.2004.03.008, PII S0021904504000516
    • B.-Y. Guo, and L.-L. Wang Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces J. Approximation Theory 128 2004 1 41 (Pubitemid 39025537)
    • (2004) Journal of Approximation Theory , vol.128 , Issue.1 , pp. 1-41
    • Guo, B.-Y.1    Wang, L.-L.2
  • 19
    • 78651257332 scopus 로고    scopus 로고
    • Homotopy perturbation method for fractional Fornberg-Whitham equation
    • P.K. Gupta, and M. Singh Homotopy perturbation method for fractional Fornberg-Whitham equation Comput. Math. Appl. 61 2011 250 254
    • (2011) Comput. Math. Appl. , vol.61 , pp. 250-254
    • Gupta, P.K.1    Singh, M.2
  • 21
    • 84858110986 scopus 로고    scopus 로고
    • Wavelet collocation method for solving multi-order fractional differential equations
    • M.H. Heydari, M.R. Hooshmandasl, F.M. Maalek Ghaini, and F. Mohammadi Wavelet collocation method for solving multi-order fractional differential equations J. Appl. Math. 2012 2012 19
    • (2012) J. Appl. Math. , vol.2012 , pp. 19
    • Heydari, M.H.1    Hooshmandasl, M.R.2    Maalek Ghaini, F.M.3    Mohammadi, F.4
  • 23
    • 78649413544 scopus 로고    scopus 로고
    • An analytical scheme for multi-order fractional differential equations
    • H.M. Jaradat, Fadi Awawdeh, and E.A. Rawashdeh An analytical scheme for multi-order fractional differential equations Tamsui Oxford J. Math. Sci. 26 2010 305 320
    • (2010) Tamsui Oxford J. Math. Sci. , vol.26 , pp. 305-320
    • Jaradat, H.M.1    Awawdeh, F.2    Rawashdeh, E.A.3
  • 24
    • 84867049052 scopus 로고    scopus 로고
    • Waveform relaxation methods for fractional differential equations with the Caputo derivatives
    • Y.-L. Jiang, and X.-L. Ding Waveform relaxation methods for fractional differential equations with the Caputo derivatives J. Comput. Appl. Math. 238 2013 51 67
    • (2013) J. Comput. Appl. Math. , vol.238 , pp. 51-67
    • Jiang, Y.-L.1    Ding, X.-L.2
  • 25
    • 84862824195 scopus 로고    scopus 로고
    • Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain
    • H. Jiang, F. Liu, I. Turner, and K. Burrage Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain J. Math. Anal. Appl. 389 2012 1117 1127
    • (2012) J. Math. Anal. Appl. , vol.389 , pp. 1117-1127
    • Jiang, H.1    Liu, F.2    Turner, I.3    Burrage, K.4
  • 26
    • 76649139784 scopus 로고    scopus 로고
    • Fractional radiative transfer equation within Chebyshev spectral approach
    • A. Kadem, and D. Baleanu Fractional radiative transfer equation within Chebyshev spectral approach Comput. Math. Appl. 59 2010 1865 1873
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1865-1873
    • Kadem, A.1    Baleanu, D.2
  • 27
    • 84873345058 scopus 로고    scopus 로고
    • An efficient new perturbative Laplace method for space-time fractional telegraph equations
    • Y. Khan, J. Diblik, N. Faraz, and Z. Smarda An efficient new perturbative Laplace method for space-time fractional telegraph equations Adv. Difference Equ. 2012 2012 204
    • (2012) Adv. Difference Equ. , vol.2012 , pp. 204
    • Khan, Y.1    Diblik, J.2    Faraz, N.3    Smarda, Z.4
  • 29
    • 33745712076 scopus 로고    scopus 로고
    • An approximate method for numerical solution of fractional differential equations
    • P. Kumer, and O.P. Agrawal An approximate method for numerical solution of fractional differential equations Signal Process. 84 2006 2602 2610
    • (2006) Signal Process. , vol.84 , pp. 2602-2610
    • Kumer, P.1    Agrawal, O.P.2
  • 30
    • 77953135236 scopus 로고    scopus 로고
    • Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations
    • Y. Li, and W. Zhao Haar wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations Appl. Math. Comput. 216 2010 2276 2285
    • (2010) Appl. Math. Comput. , vol.216 , pp. 2276-2285
    • Li, Y.1    Zhao, W.2
  • 31
    • 84868198807 scopus 로고    scopus 로고
    • Spectral approximations to the fractional integral and derivative
    • C. Li, F. Zeng, and F. Liu Spectral approximations to the fractional integral and derivative Fract. Calc. Appl. Anal. 15 2012 383 406
    • (2012) Fract. Calc. Appl. Anal. , vol.15 , pp. 383-406
    • Li, C.1    Zeng, F.2    Liu, F.3
  • 32
    • 84871790575 scopus 로고    scopus 로고
    • Numerical methods for solving the multi-term time-fractional wave-diffusion equations
    • F. Liu, M.M. Meerschaert, R.J. McGough, P. Zhuang, and Q. Liu Numerical methods for solving the multi-term time-fractional wave-diffusion equations Fract. Calc. Appl. Anal. 16 2013 9 25
    • (2013) Fract. Calc. Appl. Anal. , vol.16 , pp. 9-25
    • Liu, F.1    Meerschaert, M.M.2    McGough, R.J.3    Zhuang, P.4    Liu, Q.5
  • 37
    • 35348869861 scopus 로고    scopus 로고
    • Modified homotopy perturbation method: Application to quadratic Riccati differential equation of fractional order
    • DOI 10.1016/j.chaos.2006.06.041, PII S0960077906005972
    • Z. Odibat, and S. Momani Modified homotopy perturbation method: application to quadratic Riccati differential equation of fractional order Chaos Solitons Fract. 36 2008 167 174 (Pubitemid 47576648)
    • (2008) Chaos, Solitons and Fractals , vol.36 , Issue.1 , pp. 167-174
    • Odibat, Z.1    Momani, S.2
  • 39
    • 0033899008 scopus 로고    scopus 로고
    • Introduction to fractional linear systems. Part 2: Discrete-time case
    • DOI 10.1049/ip-vis:20000273
    • M. Ortigueira Introduction to fraction linear systems. Part 2: discrete-time case IEE Proceedings Vision, Image, Signal Processing 147 2000 71 78 (Pubitemid 30589668)
    • (2000) IEE Proceedings: Vision, Image and Signal Processing , vol.147 , Issue.1 , pp. 71-78
    • Ortigueira, M.D.1
  • 40
    • 0020905495 scopus 로고
    • Numerical solution of differential eigenvalue problems with an operational approach to the tau method
    • E.L. Ortiz, and H. Samara Numerical solutions of differential eigenvalues problems with with an operational approach to the Tau method Computing 31 1983 95 103 (Pubitemid 14472687)
    • (1983) Computing (Vienna/New York) , vol.31 , Issue.2 , pp. 95-103
    • Ortiz, E.L.1    Samara, H.2
  • 43
    • 74249095517 scopus 로고    scopus 로고
    • A new operational matrix for solving fractional-order differential equations
    • A. Saadatmandi, and M. Dehghan A new operational matrix for solving fractional-order differential equations Comput. Math. Appl. 59 2010 1326 1336
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1326-1336
    • Saadatmandi, A.1    Dehghan, M.2
  • 44
    • 0037174280 scopus 로고    scopus 로고
    • Analytical approximate solutions for nonlinear fractional differential equations
    • DOI 10.1016/S0096-3003(01)00167-9, PII S0096300301001679
    • N.T. Shawagfeh Analytical approximate solutions for nonlinear fractional differential equations Appl. Math. Comput. 131 2002 517 529 (Pubitemid 34813503)
    • (2002) Applied Mathematics and Computation , vol.131 , Issue.2-3 , pp. 517-529
    • Shawagfeh, N.T.1
  • 46
    • 78049255335 scopus 로고    scopus 로고
    • Convergence of the variational iteration method for solving multi-order fractional differential equations
    • S. Yanga, A. Xiao, and H. Su Convergence of the variational iteration method for solving multi-order fractional differential equations Comput. Math. Appl. 60 2010 2871 2879
    • (2010) Comput. Math. Appl. , vol.60 , pp. 2871-2879
    • Yanga, S.1    Xiao, A.2    Su, H.3
  • 48
    • 84873098191 scopus 로고    scopus 로고
    • Numerical solution of the Bagley-Torvik equation by the Bessel collocation method
    • 10.1002/mma.2588
    • S. Yuzbasi Numerical solution of the Bagley-Torvik equation by the Bessel collocation method Math. Methods Appl. Sci. 2012 10.1002/mma.2588
    • (2012) Math. Methods Appl. Sci.
    • Yuzbasi, S.1
  • 49
    • 84871234727 scopus 로고    scopus 로고
    • The iterative solutions of nonlinear fractional differential equations
    • X. Zhang, L. Liu, Y. Wu, and Y. Lu The iterative solutions of nonlinear fractional differential equations Appl. Math. Comput. 219 2013 4680 4691
    • (2013) Appl. Math. Comput. , vol.219 , pp. 4680-4691
    • Zhang, X.1    Liu, L.2    Wu, Y.3    Lu, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.