메뉴 건너뛰기




Volumn 15, Issue 3, 2012, Pages 383-406

Spectral approximations to the fractional integral and derivative

Author keywords

Caputo derivative; Fractional integral; Jacobi polynomials; Spectral approximation

Indexed keywords


EID: 84868198807     PISSN: 13110454     EISSN: 13142444     Source Type: Journal    
DOI: 10.2478/s13540-012-0028-x     Document Type: Article
Times cited : (154)

References (32)
  • 1
    • 0021439912 scopus 로고
    • On the appearance of the fractional derivative in the behavior of real materials
    • R.L. Bagley, P.J. Torvik, On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1984), 294-298.
    • (1984) J. Appl. Mech. , vol.51 , pp. 294-298
    • Bagley, R.L.1    Torvik, P.J.2
  • 3
    • 33847753419 scopus 로고    scopus 로고
    • Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models
    • F. Cort́es, M. Elejabarrieta, Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models. Int. J. Numer. Meth. Engng. 69 (2007), 2173-2195.
    • (2007) Int. J. Numer. Meth. Engng. , vol.69 , pp. 2173-2195
    • Cort́es, F.1    Elejabarrieta, M.2
  • 5
    • 80052270048 scopus 로고    scopus 로고
    • A chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
    • E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, A chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62 (2011), 2364-2373.
    • (2011) Comput. Math. Appl. , vol.62 , pp. 2364-2373
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 6
    • 79960555480 scopus 로고    scopus 로고
    • Efficient chebyshev spectral methods for solving multi-term fractional orders differential equations
    • E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Modelling 35 (2011), 5662-5672.
    • (2011) Appl. Math. Modelling , vol.35 , pp. 5662-5672
    • Doha, E.H.1    Bhrawy, A.H.2    Ezz-Eldien, S.S.3
  • 7
    • 0037113861 scopus 로고    scopus 로고
    • The numerical solution of linear multi-term fractional equations: System of equations
    • J.T. Edwards, N.J. Ford, A.C. Simpson, The numerical solution of linear multi-term fractional equations: System of equations. J. Comput. Appl. Math. 148 (2002), 401-418.
    • (2002) J. Comput. Appl. Math. , vol.148 , pp. 401-418
    • Edwards, J.T.1    Ford, N.J.2    Simpson, A.C.3
  • 8
    • 79953684270 scopus 로고    scopus 로고
    • A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations
    • S. Esmaeili, M. Shamsi, A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 3646-3654.
    • (2011) Commun. Nonlinear Sci. Numer. Simulat. , vol.16 , pp. 3646-3654
    • Esmaeili, S.1    Shamsi, M.2
  • 9
    • 10844270442 scopus 로고    scopus 로고
    • Application of fractional calculus to fluid mechanics
    • V.V. Kulish, Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124 (2002), 803-808.
    • (2002) J. Fluids Eng. , vol.124 , pp. 803-808
    • Kulish, V.V.1
  • 10
    • 79952454978 scopus 로고    scopus 로고
    • Numerical approach to fractional calculus and fractional ordinary differential equations
    • C.P. Li, A. Chen, J.J. Ye, Numerical approach to fractional calculus and fractional ordinary differential equations. J. Comput. Phys. 230 (2011), 3352-3368.
    • (2011) J. Comput. Phys. , vol.230 , pp. 3352-3368
    • Li, C.P.1    Chen, A.2    Ye, J.J.3
  • 11
    • 84861220597 scopus 로고    scopus 로고
    • Finite difference methods for fractional differential equations
    • (28 pages); DOI: 10.1142/S0218127412300145
    • C.P. Li, F.H. Zeng, Finite difference methods for fractional differential equations. Int. J. Bifurcation Chaos 22, No 4 (2012), 1230014 (28 pages); DOI: 10.1142/S0218127412300145; http://www.worldscinet.com/ijbc/ijbc.shtml
    • (2012) Int. J. Bifurcation Chaos , vol.22 , Issue.4 , pp. 1230014
    • Li, C.P.1    Zeng, F.H.2
  • 12
    • 78649919287 scopus 로고    scopus 로고
    • Two new implicit numerical methods for the fractional cable equation
    • F. Liu, Q.Q. Yang, I. Turner, Two new implicit numerical methods for the fractional cable equation. J. Comput. Nonlinear Dyn. 6 (2011), 011009-1.
    • (2011) J. Comput. Nonlinear Dyn. , vol.6 , pp. 011009-1
    • Liu, F.1    Yang, Q.Q.2    Turner, I.3
  • 13
    • 0000717432 scopus 로고
    • Discretized fractional calculus
    • C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986), 704-719.
    • (1986) SIAM J. Math. Anal. , vol.17 , pp. 704-719
    • Lubich, C.1
  • 18
    • 33744801528 scopus 로고    scopus 로고
    • Matrix approach to discrete fractional calculus
    • I. Podlubny, Matrix approach to discrete fractional calculus, Fract. Calc. Appl. Anal. 3, No 4 (2000), 359-386.
    • (2000) Fract. Calc. Appl. Anal. , vol.3 , Issue.4 , pp. 359-386
    • Podlubny, I.1
  • 19
    • 61349186917 scopus 로고    scopus 로고
    • Matrix approach to discrete fractional calculus ii: Partial fractional differential equations
    • I. Podlubny, A. Chechkin, T. Skovranek, Y.Q. Chen, B. Vinagre, Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 228 (2009), 3137-3153.
    • (2009) J. Comput. Phys. , vol.228 , pp. 3137-3153
    • Podlubny, I.1    Chechkin, A.2    Skovranek, T.3    Chen, Y.Q.4    Vinagre, B.5
  • 20
    • 85065556461 scopus 로고    scopus 로고
    • Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results
    • Y.A. Rossikhin, M.V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Applied Mechanics Reviews 63 (2010), 010801-1.
    • (2010) Applied Mechanics Reviews , vol.63 , pp. 010801-1
    • Rossikhin, Y.A.1    Shitikova, M.V.2
  • 21
    • 74249095517 scopus 로고    scopus 로고
    • A new operational matrix for solving fractional-order differential equations
    • A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59 (2010), 1326-1336.
    • (2010) Comput. Math. Appl. , vol.59 , pp. 1326-1336
    • Saadatmandi, A.1    Dehghan, M.2
  • 23
    • 33745712084 scopus 로고    scopus 로고
    • On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems
    • A. Schmidt, L. Gaul, On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems. Signal Processing 86 (2006), 2592-2601.
    • (2006) Signal Processing , vol.86 , pp. 2592-2601
    • Schmidt, A.1    Gaul, L.2
  • 26
    • 54249111560 scopus 로고    scopus 로고
    • Quadrature rule for abel's equations: Uniformly approximating fractional derivatives
    • H. Sugiura, T. Hasegawa, Quadrature rule for Abel's equations: Uniformly approximating fractional derivatives. J. Comput. Appl. Math. 223 (2009), 459-468.
    • (2009) J. Comput. Appl. Math. , vol.223 , pp. 459-468
    • Sugiura, H.1    Hasegawa, T.2
  • 27
    • 77957362117 scopus 로고    scopus 로고
    • Recent history of fractional calculus
    • doi:10.1016/j.cnsns.2010.05.027;
    • J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, No 3 (2011), 1140-1153; doi:10.1016/j.cnsns.2010.05.027; http://www.sciencedirect.com/ science/article/pii/S1007570410003205
    • (2011) Commun. Nonlinear Sci. Numer. Simul. , vol.16 , Issue.3 , pp. 1140-1153
    • Tenreiro Machado, J.1    Kiryakova, V.2    Mainardi, F.3
  • 28
    • 84861204912 scopus 로고    scopus 로고
    • Finite difference schemes for variable-order time fractional diffusion equation
    • (16 pages); DOI: 10.1142/S021812741250085X
    • H.G. Sun, W. Chen, C.P. Li, Y.Q. Chen, Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurcation Chaos 22, No 4 (2012), 1250085 (16 pages); DOI: 10.1142/S021812741250085X; http://www.worldscinet.com/ijbc/ijbc.shtml
    • (2012) Int. J. Bifurcation Chaos , vol.22 , Issue.4 , pp. 1250085
    • Sun, H.G.1    Chen, W.2    Li, C.P.3    Chen, Y.Q.4
  • 29
    • 30744474991 scopus 로고    scopus 로고
    • A fully discrete difference scheme for a diffusionwave system
    • Z.Z. Sun, X.N. Wu, A fully discrete difference scheme for a diffusionwave system. Appl. Numer. Math. 56 (2006), 193-209.
    • (2006) Appl. Numer. Math. , vol.56 , pp. 193-209
    • Sun, Z.Z.1    Wu, X.N.2
  • 30
    • 41449094744 scopus 로고    scopus 로고
    • Solving linear and nonlinear spacetime fractional reaction-diffusion equations by the adomian decomposition method
    • Q. Yu, F. Liu, V. Anh, I. Turner, Solving linear and nonlinear spacetime fractional reaction-diffusion equations by the Adomian decomposition method. Int. J. Numer. Meth. Engng. 74 (2008), 138-158.
    • (2008) Int. J. Numer. Meth. Engng. , vol.74 , pp. 138-158
    • Yu, Q.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 31
    • 61449085393 scopus 로고    scopus 로고
    • Computational algorithms for computing the fractional derivatives of functions
    • Z.M. Odibat, Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simulat. 79 (2009), 2013-2020.
    • (2009) Math. Comput. Simulat. , vol.79 , pp. 2013-2020
    • Odibat, Z.M.1
  • 32
    • 81955168106 scopus 로고    scopus 로고
    • Timedependent fractional advection-diffusion equations by an implicit mls meshless method
    • P. Zhuang, T. Gu, F. Liu, I. Turner, P.K.D.V. Yarlagadda, Timedependent fractional advection-diffusion equations by an implicit MLS meshless method. Int. J. Numer. Meth. Engng. 88 (2011), 1346-1362.
    • (2011) Int. J. Numer. Meth. Engng. , vol.88 , pp. 1346-1362
    • Zhuang, P.1    Gu, T.2    Liu, F.3    Turner, I.4    P.K.D.V. Yarlagadda5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.