-
1
-
-
0021439912
-
On the appearance of the fractional derivative in the behavior of real materials
-
R.L. Bagley, P.J. Torvik, On the appearance of the fractional derivative in the behavior of real materials. J. Appl. Mech. 51 (1984), 294-298.
-
(1984)
J. Appl. Mech.
, vol.51
, pp. 294-298
-
-
Bagley, R.L.1
Torvik, P.J.2
-
2
-
-
33747875704
-
-
Springer-Verlag, Berlin
-
C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Specral Methods. Fundamentals in Single Domains. Springer-Verlag, Berlin (2006).
-
(2006)
Specral Methods. Fundamentals in Single Domains
-
-
Canuto, C.1
Hussaini, M.Y.2
Quarteroni, A.3
Zang, T.A.4
-
3
-
-
33847753419
-
Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models
-
F. Cort́es, M. Elejabarrieta, Finite element formulations for transient dynamic analysis in structural systems with viscoelastic treatments containing fractional derivative models. Int. J. Numer. Meth. Engng. 69 (2007), 2173-2195.
-
(2007)
Int. J. Numer. Meth. Engng.
, vol.69
, pp. 2173-2195
-
-
Cort́es, F.1
Elejabarrieta, M.2
-
4
-
-
10644238068
-
Algorithms for the fractional calculus: A selection of numerical methods
-
K. Diethelm, N.J. Ford, A.D. Freed, Y. Luchko, Algorithms for the fractional calculus: a selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194 (2005), 743-773.
-
(2005)
Comput. Methods Appl. Mech. Engrg.
, vol.194
, pp. 743-773
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
Luchko, Y.4
-
5
-
-
80052270048
-
A chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order
-
E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, A chebyshev spectral method based on operational matrix for initial and boundary value problems of fractional order. Comput. Math. Appl. 62 (2011), 2364-2373.
-
(2011)
Comput. Math. Appl.
, vol.62
, pp. 2364-2373
-
-
Doha, E.H.1
Bhrawy, A.H.2
Ezz-Eldien, S.S.3
-
6
-
-
79960555480
-
Efficient chebyshev spectral methods for solving multi-term fractional orders differential equations
-
E.H. Doha, A.H. Bhrawy, S.S. Ezz-Eldien, Efficient Chebyshev spectral methods for solving multi-term fractional orders differential equations. Appl. Math. Modelling 35 (2011), 5662-5672.
-
(2011)
Appl. Math. Modelling
, vol.35
, pp. 5662-5672
-
-
Doha, E.H.1
Bhrawy, A.H.2
Ezz-Eldien, S.S.3
-
7
-
-
0037113861
-
The numerical solution of linear multi-term fractional equations: System of equations
-
J.T. Edwards, N.J. Ford, A.C. Simpson, The numerical solution of linear multi-term fractional equations: System of equations. J. Comput. Appl. Math. 148 (2002), 401-418.
-
(2002)
J. Comput. Appl. Math.
, vol.148
, pp. 401-418
-
-
Edwards, J.T.1
Ford, N.J.2
Simpson, A.C.3
-
8
-
-
79953684270
-
A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations
-
S. Esmaeili, M. Shamsi, A pseudo-spectral scheme for the approximate solution of a family of fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat. 16 (2011), 3646-3654.
-
(2011)
Commun. Nonlinear Sci. Numer. Simulat.
, vol.16
, pp. 3646-3654
-
-
Esmaeili, S.1
Shamsi, M.2
-
9
-
-
10844270442
-
Application of fractional calculus to fluid mechanics
-
V.V. Kulish, Application of fractional calculus to fluid mechanics. J. Fluids Eng. 124 (2002), 803-808.
-
(2002)
J. Fluids Eng.
, vol.124
, pp. 803-808
-
-
Kulish, V.V.1
-
10
-
-
79952454978
-
Numerical approach to fractional calculus and fractional ordinary differential equations
-
C.P. Li, A. Chen, J.J. Ye, Numerical approach to fractional calculus and fractional ordinary differential equations. J. Comput. Phys. 230 (2011), 3352-3368.
-
(2011)
J. Comput. Phys.
, vol.230
, pp. 3352-3368
-
-
Li, C.P.1
Chen, A.2
Ye, J.J.3
-
11
-
-
84861220597
-
Finite difference methods for fractional differential equations
-
(28 pages); DOI: 10.1142/S0218127412300145
-
C.P. Li, F.H. Zeng, Finite difference methods for fractional differential equations. Int. J. Bifurcation Chaos 22, No 4 (2012), 1230014 (28 pages); DOI: 10.1142/S0218127412300145; http://www.worldscinet.com/ijbc/ijbc.shtml
-
(2012)
Int. J. Bifurcation Chaos
, vol.22
, Issue.4
, pp. 1230014
-
-
Li, C.P.1
Zeng, F.H.2
-
12
-
-
78649919287
-
Two new implicit numerical methods for the fractional cable equation
-
F. Liu, Q.Q. Yang, I. Turner, Two new implicit numerical methods for the fractional cable equation. J. Comput. Nonlinear Dyn. 6 (2011), 011009-1.
-
(2011)
J. Comput. Nonlinear Dyn.
, vol.6
, pp. 011009-1
-
-
Liu, F.1
Yang, Q.Q.2
Turner, I.3
-
13
-
-
0000717432
-
Discretized fractional calculus
-
C. Lubich, Discretized fractional calculus. SIAM J. Math. Anal. 17 (1986), 704-719.
-
(1986)
SIAM J. Math. Anal.
, vol.17
, pp. 704-719
-
-
Lubich, C.1
-
14
-
-
0345448323
-
Numerical methods for the solution of partial differential equations of fractional order
-
V.E. Lynch, B.A. Carreras, D. del-Castillo-Negrete, K.M. Ferreira-Mejias, H.R. Hicks, Numerical methods for the solution of partial differential equations of fractional order. J. Comput. Phys. 192 (2003), 406-421.
-
(2003)
J. Comput. Phys.
, vol.192
, pp. 406-421
-
-
Lynch, V.E.1
Carreras, B.A.2
Del-Castillo-Negrete, D.3
Ferreira-Mejias, K.M.4
Hicks, H.R.5
-
18
-
-
33744801528
-
Matrix approach to discrete fractional calculus
-
I. Podlubny, Matrix approach to discrete fractional calculus, Fract. Calc. Appl. Anal. 3, No 4 (2000), 359-386.
-
(2000)
Fract. Calc. Appl. Anal.
, vol.3
, Issue.4
, pp. 359-386
-
-
Podlubny, I.1
-
19
-
-
61349186917
-
Matrix approach to discrete fractional calculus ii: Partial fractional differential equations
-
I. Podlubny, A. Chechkin, T. Skovranek, Y.Q. Chen, B. Vinagre, Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 228 (2009), 3137-3153.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 3137-3153
-
-
Podlubny, I.1
Chechkin, A.2
Skovranek, T.3
Chen, Y.Q.4
Vinagre, B.5
-
20
-
-
85065556461
-
Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results
-
Y.A. Rossikhin, M.V. Shitikova, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Applied Mechanics Reviews 63 (2010), 010801-1.
-
(2010)
Applied Mechanics Reviews
, vol.63
, pp. 010801-1
-
-
Rossikhin, Y.A.1
Shitikova, M.V.2
-
21
-
-
74249095517
-
A new operational matrix for solving fractional-order differential equations
-
A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations. Comput. Math. Appl. 59 (2010), 1326-1336.
-
(2010)
Comput. Math. Appl.
, vol.59
, pp. 1326-1336
-
-
Saadatmandi, A.1
Dehghan, M.2
-
22
-
-
0003598080
-
-
Gordon, Breach Science, Yverdon Switzerland
-
S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives. Gordon and Breach Science, Yverdon, Switzerland (1993).
-
(1993)
Fractional Integrals and Derivatives
-
-
Samko, S.G.1
Kilbas, A.A.2
Marichev, O.I.3
-
23
-
-
33745712084
-
On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems
-
A. Schmidt, L. Gaul, On the numerical evaluation of fractional derivatives in multi-degree-of-freedom systems. Signal Processing 86 (2006), 2592-2601.
-
(2006)
Signal Processing
, vol.86
, pp. 2592-2601
-
-
Schmidt, A.1
Gaul, L.2
-
24
-
-
77950626914
-
-
Springer Verlag, Heidelberg, Berlin
-
J. Shen, T. Tang, L. L. Wang, Spectral Methods. Algorithms, Analysis and Applications. Springer-Verlag, Heidelberg, Berlin (2011).
-
(2011)
Spectral Methods. Algorithms Analysis and Applications
-
-
Shen, J.1
Tang, T.2
Wang, L.L.3
-
26
-
-
54249111560
-
Quadrature rule for abel's equations: Uniformly approximating fractional derivatives
-
H. Sugiura, T. Hasegawa, Quadrature rule for Abel's equations: Uniformly approximating fractional derivatives. J. Comput. Appl. Math. 223 (2009), 459-468.
-
(2009)
J. Comput. Appl. Math.
, vol.223
, pp. 459-468
-
-
Sugiura, H.1
Hasegawa, T.2
-
27
-
-
77957362117
-
Recent history of fractional calculus
-
doi:10.1016/j.cnsns.2010.05.027;
-
J. Tenreiro Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, No 3 (2011), 1140-1153; doi:10.1016/j.cnsns.2010.05.027; http://www.sciencedirect.com/ science/article/pii/S1007570410003205
-
(2011)
Commun. Nonlinear Sci. Numer. Simul.
, vol.16
, Issue.3
, pp. 1140-1153
-
-
Tenreiro Machado, J.1
Kiryakova, V.2
Mainardi, F.3
-
28
-
-
84861204912
-
Finite difference schemes for variable-order time fractional diffusion equation
-
(16 pages); DOI: 10.1142/S021812741250085X
-
H.G. Sun, W. Chen, C.P. Li, Y.Q. Chen, Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurcation Chaos 22, No 4 (2012), 1250085 (16 pages); DOI: 10.1142/S021812741250085X; http://www.worldscinet.com/ijbc/ijbc.shtml
-
(2012)
Int. J. Bifurcation Chaos
, vol.22
, Issue.4
, pp. 1250085
-
-
Sun, H.G.1
Chen, W.2
Li, C.P.3
Chen, Y.Q.4
-
29
-
-
30744474991
-
A fully discrete difference scheme for a diffusionwave system
-
Z.Z. Sun, X.N. Wu, A fully discrete difference scheme for a diffusionwave system. Appl. Numer. Math. 56 (2006), 193-209.
-
(2006)
Appl. Numer. Math.
, vol.56
, pp. 193-209
-
-
Sun, Z.Z.1
Wu, X.N.2
-
30
-
-
41449094744
-
Solving linear and nonlinear spacetime fractional reaction-diffusion equations by the adomian decomposition method
-
Q. Yu, F. Liu, V. Anh, I. Turner, Solving linear and nonlinear spacetime fractional reaction-diffusion equations by the Adomian decomposition method. Int. J. Numer. Meth. Engng. 74 (2008), 138-158.
-
(2008)
Int. J. Numer. Meth. Engng.
, vol.74
, pp. 138-158
-
-
Yu, Q.1
Liu, F.2
Anh, V.3
Turner, I.4
-
31
-
-
61449085393
-
Computational algorithms for computing the fractional derivatives of functions
-
Z.M. Odibat, Computational algorithms for computing the fractional derivatives of functions. Math. Comput. Simulat. 79 (2009), 2013-2020.
-
(2009)
Math. Comput. Simulat.
, vol.79
, pp. 2013-2020
-
-
Odibat, Z.M.1
-
32
-
-
81955168106
-
Timedependent fractional advection-diffusion equations by an implicit mls meshless method
-
P. Zhuang, T. Gu, F. Liu, I. Turner, P.K.D.V. Yarlagadda, Timedependent fractional advection-diffusion equations by an implicit MLS meshless method. Int. J. Numer. Meth. Engng. 88 (2011), 1346-1362.
-
(2011)
Int. J. Numer. Meth. Engng.
, vol.88
, pp. 1346-1362
-
-
Zhuang, P.1
Gu, T.2
Liu, F.3
Turner, I.4
P.K.D.V. Yarlagadda5
|