-
1
-
-
0005145088
-
Wave splitting of the telegraph equation in [InlineEquation not available: See fulltext.] and its application to inverse scattering
-
1251206 10.1088/0266-5611/9/6/013 0797.35168
-
Weston VH, He S:Wave splitting of the telegraph equation in[InlineEquation not available: see fulltext.]and its application to inverse scattering. Inverse Probl. 1993, 9:789-812.
-
(1993)
Inverse Probl
, vol.9
, pp. 789-812
-
-
Weston, V.H.1
He, S.2
-
2
-
-
0343455253
-
Digital signal propagation in dispersive media
-
Jordan PM, Puri A: Digital signal propagation in dispersive media. J. Appl. Phys. 1999, 85:1273-1282. (Pubitemid 129614913)
-
(1999)
Journal of Applied Physics
, vol.85
, Issue.3
, pp. 1273-1282
-
-
Jordan, P.M.1
Puri, A.2
-
3
-
-
54649085091
-
Singular perturbed telegraph equations with applications in random walk theory
-
1613535 10.1155/S1048953398000021 0909.35011
-
Banasiak J, Mika R: Singular perturbed telegraph equations with applications in random walk theory. J. Appl. Math. Stoch. Anal. 1998, 11:9-28.
-
(1998)
J. Appl. Math. Stoch. Anal
, vol.11
, pp. 9-28
-
-
Banasiak, J.1
Mika, R.2
-
6
-
-
0037254447
-
The space-fractional telegraph equation and the related fractional telegraph process
-
DOI 10.1142/S0252959903000050
-
Orsingher E, Zhao X: The space-fractional telegraph equation and the related fractional telegraph process. Chin. Ann. Math., Ser. B 2003, 24:45-56. (Pubitemid 36420465)
-
(2003)
Chinese Annals of Mathematics. Series B
, vol.24
, Issue.1
, pp. 45-56
-
-
Orsingher, E.1
Zhao, X.2
-
7
-
-
0742323831
-
Time-fractional telegraph equations and telegraph processes with brownian time
-
DOI 10.1007/s00440-003-0309-8
-
Orsingher E, Beghin L: Time-fractional telegraph equations and telegraph processes with Brownian time. Probab. Theory Relat. Fields 2004, 128:141-160. (Pubitemid 38157144)
-
(2004)
Probability Theory and Related Fields
, vol.128
, Issue.1
, pp. 141-160
-
-
Orsingher, E.1
Beghin, L.2
-
8
-
-
79953189314
-
An approximate analytical solution of time-fractional telegraph equation
-
2784584 10.1016/j.amc.2011.02.030 1216.65135
-
Das S, Vishal K, Gupta PK, Yildirim A: An approximate analytical solution of time-fractional telegraph equation. Appl. Math. Comput. 2011, 217:7405-7411.
-
(2011)
Appl. Math. Comput
, vol.217
, pp. 7405-7411
-
-
Das, S.1
Vishal, K.2
Gupta, P.K.3
Yildirim, A.4
-
9
-
-
0032672778
-
Homotopy perturbation technique
-
10.1016/S0045-7825(99)00018-3 0956.70017
-
He JH: Homotopy perturbation technique. Comput. Methods Appl. Mech. Eng. 1999,178(3-4):257-262.
-
(1999)
Comput. Methods Appl. Mech. Eng
, vol.178
, Issue.3-4
, pp. 257-262
-
-
He, J.H.1
-
10
-
-
34748871953
-
He's homotopy perturbation method for a boundary layer equation in unbounded domain
-
DOI 10.1016/j.camwa.2006.12.052, PII S0898122107002787, Variational Iteration Method for Nonlinear Problems
-
Xu L: He's homotopy perturbation method for a boundary layer equation in unbounded domain. Comput. Math. Appl. 2007, 54:1067-1070. (Pubitemid 47488822)
-
(2007)
Computers and Mathematics with Applications
, vol.54
, Issue.7-8
, pp. 1067-1070
-
-
Xu, L.1
-
11
-
-
84858433814
-
Convergence of the homotopy perturbation method
-
10.1515/ijnsns.2011.020
-
Turkyilmazoglu M: Convergence of the homotopy perturbation method. Int. J. Nonlinear Sci. Numer. Simul. 2011, 12:9-14.
-
(2011)
Int. J. Nonlinear Sci. Numer. Simul
, vol.12
, pp. 9-14
-
-
Turkyilmazoglu, M.1
-
12
-
-
84855353231
-
Application of the homotopy perturbation method for the solution of inverse heat conduction problem
-
10.1016/j.icheatmasstransfer.2011.09.005
-
Hetmaniok E, Nowak I, Slota D, Witula R: Application of the homotopy perturbation method for the solution of inverse heat conduction problem. Int. Commun. Heat Mass Transf. 2012, 39:30-35.
-
(2012)
Int. Commun. Heat Mass Transf
, vol.39
, pp. 30-35
-
-
Hetmaniok, E.1
Nowak, I.2
Slota, D.3
Witula, R.4
-
13
-
-
78651257332
-
Homotopy perturbation method for fractional Fornberg-Whitham equation
-
2754133 10.1016/j.camwa.2010.10.045 1211.65138
-
Gupta PK, Singh M: Homotopy perturbation method for fractional Fornberg-Whitham equation. Comput. Math. Appl. 2011, 61:250-254.
-
(2011)
Comput. Math. Appl
, vol.61
, pp. 250-254
-
-
Gupta, P.K.1
Singh, M.2
-
14
-
-
79951958606
-
Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain
-
2782857 10.1016/j.mcm.2010.12.046 1219.76035
-
Golbabai A, Sayevand K: Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain. Math. Comput. Model. 2011, 53:1708-1718.
-
(2011)
Math. Comput. Model
, vol.53
, pp. 1708-1718
-
-
Golbabai, A.1
Sayevand, K.2
-
15
-
-
27144506208
-
Analytic and approximate solutions of the space- and time-fractional telegraph equations
-
DOI 10.1016/j.amc.2005.01.009, PII S0096300305000536
-
Momani S: Analytic and approximate solutions of the space- and time-fractional telegraph equations. Appl. Math. Comput. 2005, 170:1126-1134. (Pubitemid 41497822)
-
(2005)
Applied Mathematics and Computation
, vol.170
, Issue.2
, pp. 1126-1134
-
-
Momani, S.1
-
16
-
-
57049186538
-
Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions
-
2483503 10.1016/j.aml.2008.06.003 1171.26305
-
Jumarie G: Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for non-differentiable functions. Appl. Math. Lett. 2009, 22:378-385.
-
(2009)
Appl. Math. Lett
, vol.22
, pp. 378-385
-
-
Jumarie, G.1
|