메뉴 건너뛰기




Volumn 59, Issue 5, 2010, Pages 1865-1873

Fractional radiative transfer equation within Chebyshev spectral approach

Author keywords

Caputo derivative; Chebyshev polynomials; Fractional calculus; Fractional radiative transfer equation

Indexed keywords

ANGULAR FLUX; CAPUTO DERIVATIVES; CHEBYSHEV POLYNOMIALS; CHEBYSHEV SPECTRAL APPROACH; FRACTIONAL CALCULUS; FRACTIONAL DERIVATIVES; FRACTIONAL DIFFERENTIAL EQUATIONS; MULTIDIMENSIONAL PROBLEMS; ORTHOGONAL POLYNOMIAL; RADIATIVE TRANSFER EQUATIONS; STEADY-STATE TRANSPORT;

EID: 76649139784     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2009.08.030     Document Type: Article
Times cited : (21)

References (21)
  • 7
    • 0003427295 scopus 로고    scopus 로고
    • Hilfer R. (Ed), World Scientific Publishing Company, Singapore
    • In: Hilfer R. (Ed). Applications of Fractional Calculus in Physics (2000), World Scientific Publishing Company, Singapore
    • (2000) Applications of Fractional Calculus in Physics
  • 9
    • 38349041965 scopus 로고    scopus 로고
    • Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation
    • Magin R.L., Abdullah A.O., Baleanu D., and Zhou X.J. Anomalous diffusion expressed through fractional order differential operators in the Bloch-Torrey equation. J. Magn. Reson. 19 2 (2008) 255-270
    • (2008) J. Magn. Reson. , vol.19 , Issue.2 , pp. 255-270
    • Magin, R.L.1    Abdullah, A.O.2    Baleanu, D.3    Zhou, X.J.4
  • 10
    • 33845669957 scopus 로고    scopus 로고
    • Fractional Hamilton formalism within Caputo's derivative
    • Baleanu D., and Agrawal O.P. Fractional Hamilton formalism within Caputo's derivative. Czech. J. Phys. 56 10-11 (2006) 1087-1092
    • (2006) Czech. J. Phys. , vol.56 , Issue.10-11 , pp. 1087-1092
    • Baleanu, D.1    Agrawal, O.P.2
  • 11
    • 0030464353 scopus 로고    scopus 로고
    • Fractional relaxation-oscillation and fractional diffusion-wave phenomena
    • 1461-1447
    • Mainardi F. Fractional relaxation-oscillation and fractional diffusion-wave phenomena. Chaos Solitons Fractals 7 9 (1996) 1461-1447
    • (1996) Chaos Solitons Fractals , vol.7 , Issue.9
    • Mainardi, F.1
  • 12
    • 14844283120 scopus 로고    scopus 로고
    • Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives
    • Muslih S., and Baleanu D. Hamiltonian formulation of systems with linear velocities within Riemann-Liouville fractional derivatives. J. Math. Anal. Appl. 304 3 (2005) 599-606
    • (2005) J. Math. Anal. Appl. , vol.304 , Issue.3 , pp. 599-606
    • Muslih, S.1    Baleanu, D.2
  • 13
    • 33745514693 scopus 로고    scopus 로고
    • Hamiltonian formulation of classical fields within Riemann-Liouville
    • Muslih S.I., Baleanu D., and Rabei E. Hamiltonian formulation of classical fields within Riemann-Liouville. Phys. Scr. 73 6 (2006) 436-438
    • (2006) Phys. Scr. , vol.73 , Issue.6 , pp. 436-438
    • Muslih, S.I.1    Baleanu, D.2    Rabei, E.3
  • 15
    • 33746269889 scopus 로고    scopus 로고
    • Nonholonomic constraints with fractional derivatives
    • Tarasov V.E., and Zaslavsky G. Nonholonomic constraints with fractional derivatives. J. Math. Phys. 39 (2006) 9797-9815
    • (2006) J. Math. Phys. , vol.39 , pp. 9797-9815
    • Tarasov, V.E.1    Zaslavsky, G.2
  • 17
    • 0012659515 scopus 로고    scopus 로고
    • An operational method for solving fractional differential equation with the Caputo derivatives
    • Luchko Y., and Gorenflo R. An operational method for solving fractional differential equation with the Caputo derivatives. Acta Math. Vietnam. 24 2 (1999) 207-233
    • (1999) Acta Math. Vietnam. , vol.24 , Issue.2 , pp. 207-233
    • Luchko, Y.1    Gorenflo, R.2
  • 21
    • 33750473703 scopus 로고    scopus 로고
    • N method for the neutron transport equation
    • N method for the neutron transport equation. Comput. Math. Appl. 52 3-4 (2006) 509-524
    • (2006) Comput. Math. Appl. , vol.52 , Issue.3-4 , pp. 509-524
    • Asadzadeh, M.1    Kadem, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.