-
1
-
-
0036650559
-
Solution for a fractional diffusion-wave equation defined in a bounded domain
-
Agrawal O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynam. 2002, 29:145-155.
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 145-155
-
-
Agrawal, O.P.1
-
2
-
-
34848822538
-
Analytical solution for the time-fractional telegraph equation by the method of separating variables
-
Chen J., Liu F., Anh V. Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 2008, 338:1364-1377.
-
(2008)
J. Math. Anal. Appl.
, vol.338
, pp. 1364-1377
-
-
Chen, J.1
Liu, F.2
Anh, V.3
-
3
-
-
33646097441
-
Pattern formation in a fractional reaction diffusion system
-
Gafiychuk V.V., Datsko B.Yo. Pattern formation in a fractional reaction diffusion system. Physica A 2006, 365:300-306.
-
(2006)
Physica A
, vol.365
, pp. 300-306
-
-
Gafiychuk, V.V.1
Datsko, B.2
-
4
-
-
44649117334
-
Boundary value problems for multi-term fractional differential equations
-
Daftardar-Gejji V., Bhalekar S. Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl. 2008, 345:754-765.
-
(2008)
J. Math. Anal. Appl.
, vol.345
, pp. 754-765
-
-
Daftardar-Gejji, V.1
Bhalekar, S.2
-
5
-
-
79951958606
-
Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain
-
Golbabai A., Sayevand K. Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain. Math. Comput. Modelling 2011, 53:1708-1718.
-
(2011)
Math. Comput. Modelling
, vol.53
, pp. 1708-1718
-
-
Golbabai, A.1
Sayevand, K.2
-
6
-
-
0000361678
-
Random walk models for space-fractional diffusion processes
-
Gorenflo R., Mainardi F. Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1998, 1:167-191.
-
(1998)
Fract. Calc. Appl. Anal.
, vol.1
, pp. 167-191
-
-
Gorenflo, R.1
Mainardi, F.2
-
7
-
-
0040478884
-
Signalling problem and Dirichlet-Neumann map for time-fractional diffusion-wave equation
-
Gorenflo R., Mainardi F. Signalling problem and Dirichlet-Neumann map for time-fractional diffusion-wave equation. Matimyas Mat. 1998, 21:109-118.
-
(1998)
Matimyas Mat.
, vol.21
, pp. 109-118
-
-
Gorenflo, R.1
Mainardi, F.2
-
9
-
-
64249135201
-
Numerical approximation of a fractional-in-space diffusion equation
-
Ilić M., Liu F., Turner I., Anh V. Numerical approximation of a fractional-in-space diffusion equation. Fract. Calc. Appl. Anal. 2005, 8(3):323-341.
-
(2005)
Fract. Calc. Appl. Anal.
, vol.8
, Issue.3
, pp. 323-341
-
-
Ilić, M.1
Liu, F.2
Turner, I.3
Anh, V.4
-
10
-
-
56749132453
-
Analytical time-domain Greens functions for power-law media
-
Kelly J.F., McGough R.J. Analytical time-domain Greens functions for power-law media. J. Acoust. Soc. Am. 2008, 124:2861-2872.
-
(2008)
J. Acoust. Soc. Am.
, vol.124
, pp. 2861-2872
-
-
Kelly, J.F.1
McGough, R.J.2
-
11
-
-
1542425102
-
Numerical solution of the space Fokker-Planck equation
-
Liu F., Anh V., Turner I. Numerical solution of the space Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166:209-219.
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
12
-
-
34547673244
-
Stability and convergence of difference methods for the space-time fractional advection-diffusion equation
-
Liu F., Zhuang P., Anh V., Turner I., Burrage K. Stability and convergence of difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 2007, 191:12-20.
-
(2007)
Appl. Math. Comput.
, vol.191
, pp. 12-20
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrage, K.5
-
13
-
-
0012659515
-
An operational method for solving fractional differential equations with the Caputo derivatives
-
Luchko Y., Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 1999, 24:207-233.
-
(1999)
Acta Math. Vietnam.
, vol.24
, pp. 207-233
-
-
Luchko, Y.1
Gorenflo, R.2
-
14
-
-
84862816430
-
Maximum principle for the fractional differential equations and its application
-
Proceedings of FDA'10, the 4th IFAC Workshop Fractional Differentiation and Applications, Badajoz, Spain, October 18-22.
-
Y. Luchko, Maximum principle for the fractional differential equations and its application, in: Proceedings of FDA'10, the 4th IFAC Workshop Fractional Differentiation and Applications, Badajoz, Spain, October 18-22, 2010.
-
(2010)
-
-
Luchko, Y.1
-
15
-
-
77957822720
-
Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation
-
Luchko Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 2011, 374:538-548.
-
(2011)
J. Math. Anal. Appl.
, vol.374
, pp. 538-548
-
-
Luchko, Y.1
-
17
-
-
78049325210
-
On the fractional signals and systems
-
Magin R., Ortigueira M.D., Podlubny I., Trujillo J. On the fractional signals and systems. Signal Process. 2011, 91:350-371.
-
(2011)
Signal Process.
, vol.91
, pp. 350-371
-
-
Magin, R.1
Ortigueira, M.D.2
Podlubny, I.3
Trujillo, J.4
-
18
-
-
30244460855
-
The fundamental solutions for the fractional diffusion-wave equation
-
Mainardi F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9:23-28.
-
(1996)
Appl. Math. Lett.
, vol.9
, pp. 23-28
-
-
Mainardi, F.1
-
19
-
-
0001983732
-
Fractional calculus: some basic problems in continuum and statistical mechanics
-
Springer, New York, A. Carpinteri, F. Mainardi (Eds.)
-
Mainardi F. Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics 1997, 291-348. Springer, New York. A. Carpinteri, F. Mainardi (Eds.).
-
(1997)
Fractals and Fractional Calculus in Continuum Mechanics
, pp. 291-348
-
-
Mainardi, F.1
-
21
-
-
4444368867
-
Finite difference approximations for fractional advection-dispersion flow equation
-
Meerschaert M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equation. J. Comput. Appl. Math. 2004, 172:65-77.
-
(2004)
J. Comput. Appl. Math.
, vol.172
, pp. 65-77
-
-
Meerschaert, M.1
Tadjeran, C.2
-
22
-
-
79952184887
-
Distributed-order fractional diffusions on bounded domains
-
Meerschaert M., Nane E., Vellaisamy P. Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 2011, 379:216-228.
-
(2011)
J. Math. Anal. Appl.
, vol.379
, pp. 216-228
-
-
Meerschaert, M.1
Nane, E.2
Vellaisamy, P.3
-
23
-
-
0002641421
-
The random walk's guide to anomalous diffusion: a fractional dynamics approach
-
Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
-
(2000)
Phys. Rep.
, vol.339
, pp. 1-77
-
-
Metzler, R.1
Klafter, J.2
-
24
-
-
4043151477
-
The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics
-
Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 2004, 37:161-208.
-
(2004)
J. Phys. A: Math. Gen.
, vol.37
, pp. 161-208
-
-
Metzler, R.1
Klafter, J.2
-
25
-
-
56249105398
-
Analytical solution of the advection-diffusion equation for a ground-level finite area source
-
Park Y.S., Baik J.Jin. Analytical solution of the advection-diffusion equation for a ground-level finite area source. Atmos. Environ. 2008, 42:9063-9069.
-
(2008)
Atmos. Environ.
, vol.42
, pp. 9063-9069
-
-
Park, Y.S.1
Baik, J.2
-
27
-
-
33846862055
-
Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation
-
Povstenko Y.Z. Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation. Int. J. Solids Struct. 2009, 44:2324-2348.
-
(2009)
Int. J. Solids Struct.
, vol.44
, pp. 2324-2348
-
-
Povstenko, Y.Z.1
-
28
-
-
77949262762
-
Signaling problem for time-fractional diffusion-wave equation in a half-plane
-
Povstenko Y.Z. Signaling problem for time-fractional diffusion-wave equation in a half-plane. Fract. Calc. Appl. Anal. 2008, 11:329-352.
-
(2008)
Fract. Calc. Appl. Anal.
, vol.11
, pp. 329-352
-
-
Povstenko, Y.Z.1
-
29
-
-
38349128567
-
Fundamental solution to three dimensional diffusion-wave equation and associated diffusive stresses
-
Povstenko Y.Z. Fundamental solution to three dimensional diffusion-wave equation and associated diffusive stresses. Chaos Solitons Fractals 2008, 36:961-972.
-
(2008)
Chaos Solitons Fractals
, vol.36
, pp. 961-972
-
-
Povstenko, Y.Z.1
-
30
-
-
84862805797
-
Analysis of fundamental solutions to fractional diffusion-wave equation in polar coordinates
-
Povstenko Y.Z. Analysis of fundamental solutions to fractional diffusion-wave equation in polar coordinates. Sci. Issues Jan Długosz Univ. Czȩstochowa, Math. 2009, XIV:97-104.
-
(2009)
Sci. Issues Jan Długosz Univ. Czȩstochowa, Math.
, vol.14
, pp. 97-104
-
-
Povstenko, Y.Z.1
-
31
-
-
77949274545
-
Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry
-
Povstenko Y.Z. Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dynam. 2010, 55:593-605.
-
(2010)
Nonlinear Dynam.
, vol.55
, pp. 593-605
-
-
Povstenko, Y.Z.1
-
32
-
-
84862781447
-
Theories of thermoelasticity based on space-time-fractional Cattaneo-type equations
-
Proceedings of FDA'10, the 4th IFAC Workshop Fractional Differentiation and Its Applications, Badajoz, Spain, October 18-20.
-
Y.Z. Povstenko, Theories of thermoelasticity based on space-time-fractional Cattaneo-type equations, in: Proceedings of FDA'10, the 4th IFAC Workshop Fractional Differentiation and Its Applications, Badajoz, Spain, October 18-20, 2010.
-
(2010)
-
-
Povstenko, Y.Z.1
-
33
-
-
79953328485
-
Solutions of the space-time fractional Cattaneo diffusion equation
-
Qi H., Jiang X. Solutions of the space-time fractional Cattaneo diffusion equation. Physica A 2011, 390:1876-1883.
-
(2011)
Physica A
, vol.390
, pp. 1876-1883
-
-
Qi, H.1
Jiang, X.2
-
34
-
-
33646191893
-
Computational aspects of FEM approximation of fractional advection dispersion equation on boundary domains in R2
-
Roop J.P. Computational aspects of FEM approximation of fractional advection dispersion equation on boundary domains in R2. J. Comput. Appl. Math. 2006, 193(1):243-268.
-
(2006)
J. Comput. Appl. Math.
, vol.193
, Issue.1
, pp. 243-268
-
-
Roop, J.P.1
-
35
-
-
70449641482
-
Nonlinear abstract boundary value problems modelling atmospheric dispersion of pollutants
-
Shakhmurov V.B., Shahmurova A. Nonlinear abstract boundary value problems modelling atmospheric dispersion of pollutants. Nonlinear Anal. Real World Appl. 2010, 11:932-951.
-
(2010)
Nonlinear Anal. Real World Appl.
, vol.11
, pp. 932-951
-
-
Shakhmurov, V.B.1
Shahmurova, A.2
-
36
-
-
48749097743
-
Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order
-
Shen S., Liu F., Anh V. Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order. J. Appl. Math. Comput. 2008, 28:147-164.
-
(2008)
J. Appl. Math. Comput.
, vol.28
, pp. 147-164
-
-
Shen, S.1
Liu, F.2
Anh, V.3
-
37
-
-
57649137996
-
The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation
-
Shen S., Liu F., Anh V., Turner I. The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 2008, 73:850-872.
-
(2008)
IMA J. Appl. Math.
, vol.73
, pp. 850-872
-
-
Shen, S.1
Liu, F.2
Anh, V.3
Turner, I.4
-
38
-
-
79951851714
-
Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation
-
Shen S., Liu F., Anh V. Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algorithms 2011, 56(3):383-403.
-
(2011)
Numer. Algorithms
, vol.56
, Issue.3
, pp. 383-403
-
-
Shen, S.1
Liu, F.2
Anh, V.3
-
39
-
-
79952190735
-
Numerical method for solving diffusion-wave phenomena
-
Stojanovic M. Numerical method for solving diffusion-wave phenomena. J. Comput. Appl. Math. 2011, 235(10):3121-3137.
-
(2011)
J. Comput. Appl. Math.
, vol.235
, Issue.10
, pp. 3121-3137
-
-
Stojanovic, M.1
-
40
-
-
77956256476
-
Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian
-
Treeby B.E., Cox B.T. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 2010, 127:2741-2748.
-
(2010)
J. Acoust. Soc. Am.
, vol.127
, pp. 2741-2748
-
-
Treeby, B.E.1
Cox, B.T.2
-
42
-
-
79957886188
-
A fast characteristic finite difference method for fractional advection-diffusion equations
-
Wang K., Wang H. A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 2011, 34:810-816.
-
(2011)
Adv. Water Resour.
, vol.34
, pp. 810-816
-
-
Wang, K.1
Wang, H.2
-
43
-
-
69249214155
-
Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
-
Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 2010, 34:200-218.
-
(2010)
Appl. Math. Model.
, vol.34
, pp. 200-218
-
-
Yang, Q.1
Liu, F.2
Turner, I.3
-
44
-
-
62349097511
-
Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications
-
Zhang Y., Benson D.A., Reeves D.M. Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Adv. Water Resour. 2009, 32:561-581.
-
(2009)
Adv. Water Resour.
, vol.32
, pp. 561-581
-
-
Zhang, Y.1
Benson, D.A.2
Reeves, D.M.3
-
45
-
-
77955515765
-
Nonlocal Cauchy problem for fractional evolution equations
-
Zhou Y., Jiao F. Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. Real World Appl. 2010, 11:4465-4475.
-
(2010)
Nonlinear Anal. Real World Appl.
, vol.11
, pp. 4465-4475
-
-
Zhou, Y.1
Jiao, F.2
|