메뉴 건너뛰기




Volumn 389, Issue 2, 2012, Pages 1117-1127

Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain

Author keywords

Analytical solution; Fractional Laplacian operator; Multi term time space Caputo Riesz fractional advection diffusion equations; Multivariate Mittag Leffler function; Nonhomogeneous initial boundary value problem

Indexed keywords


EID: 84862824195     PISSN: 0022247X     EISSN: 10960813     Source Type: Journal    
DOI: 10.1016/j.jmaa.2011.12.055     Document Type: Article
Times cited : (184)

References (45)
  • 1
    • 0036650559 scopus 로고    scopus 로고
    • Solution for a fractional diffusion-wave equation defined in a bounded domain
    • Agrawal O.P. Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynam. 2002, 29:145-155.
    • (2002) Nonlinear Dynam. , vol.29 , pp. 145-155
    • Agrawal, O.P.1
  • 2
    • 34848822538 scopus 로고    scopus 로고
    • Analytical solution for the time-fractional telegraph equation by the method of separating variables
    • Chen J., Liu F., Anh V. Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 2008, 338:1364-1377.
    • (2008) J. Math. Anal. Appl. , vol.338 , pp. 1364-1377
    • Chen, J.1    Liu, F.2    Anh, V.3
  • 3
    • 33646097441 scopus 로고    scopus 로고
    • Pattern formation in a fractional reaction diffusion system
    • Gafiychuk V.V., Datsko B.Yo. Pattern formation in a fractional reaction diffusion system. Physica A 2006, 365:300-306.
    • (2006) Physica A , vol.365 , pp. 300-306
    • Gafiychuk, V.V.1    Datsko, B.2
  • 4
    • 44649117334 scopus 로고    scopus 로고
    • Boundary value problems for multi-term fractional differential equations
    • Daftardar-Gejji V., Bhalekar S. Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl. 2008, 345:754-765.
    • (2008) J. Math. Anal. Appl. , vol.345 , pp. 754-765
    • Daftardar-Gejji, V.1    Bhalekar, S.2
  • 5
    • 79951958606 scopus 로고    scopus 로고
    • Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain
    • Golbabai A., Sayevand K. Analytical modelling of fractional advection-dispersion equation defined in a bounded space domain. Math. Comput. Modelling 2011, 53:1708-1718.
    • (2011) Math. Comput. Modelling , vol.53 , pp. 1708-1718
    • Golbabai, A.1    Sayevand, K.2
  • 6
    • 0000361678 scopus 로고    scopus 로고
    • Random walk models for space-fractional diffusion processes
    • Gorenflo R., Mainardi F. Random walk models for space-fractional diffusion processes. Fract. Calc. Appl. Anal. 1998, 1:167-191.
    • (1998) Fract. Calc. Appl. Anal. , vol.1 , pp. 167-191
    • Gorenflo, R.1    Mainardi, F.2
  • 7
    • 0040478884 scopus 로고    scopus 로고
    • Signalling problem and Dirichlet-Neumann map for time-fractional diffusion-wave equation
    • Gorenflo R., Mainardi F. Signalling problem and Dirichlet-Neumann map for time-fractional diffusion-wave equation. Matimyas Mat. 1998, 21:109-118.
    • (1998) Matimyas Mat. , vol.21 , pp. 109-118
    • Gorenflo, R.1    Mainardi, F.2
  • 9
    • 64249135201 scopus 로고    scopus 로고
    • Numerical approximation of a fractional-in-space diffusion equation
    • Ilić M., Liu F., Turner I., Anh V. Numerical approximation of a fractional-in-space diffusion equation. Fract. Calc. Appl. Anal. 2005, 8(3):323-341.
    • (2005) Fract. Calc. Appl. Anal. , vol.8 , Issue.3 , pp. 323-341
    • Ilić, M.1    Liu, F.2    Turner, I.3    Anh, V.4
  • 10
    • 56749132453 scopus 로고    scopus 로고
    • Analytical time-domain Greens functions for power-law media
    • Kelly J.F., McGough R.J. Analytical time-domain Greens functions for power-law media. J. Acoust. Soc. Am. 2008, 124:2861-2872.
    • (2008) J. Acoust. Soc. Am. , vol.124 , pp. 2861-2872
    • Kelly, J.F.1    McGough, R.J.2
  • 11
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of the space Fokker-Planck equation
    • Liu F., Anh V., Turner I. Numerical solution of the space Fokker-Planck equation. J. Comput. Appl. Math. 2004, 166:209-219.
    • (2004) J. Comput. Appl. Math. , vol.166 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 12
    • 34547673244 scopus 로고    scopus 로고
    • Stability and convergence of difference methods for the space-time fractional advection-diffusion equation
    • Liu F., Zhuang P., Anh V., Turner I., Burrage K. Stability and convergence of difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 2007, 191:12-20.
    • (2007) Appl. Math. Comput. , vol.191 , pp. 12-20
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4    Burrage, K.5
  • 13
    • 0012659515 scopus 로고    scopus 로고
    • An operational method for solving fractional differential equations with the Caputo derivatives
    • Luchko Y., Gorenflo R. An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 1999, 24:207-233.
    • (1999) Acta Math. Vietnam. , vol.24 , pp. 207-233
    • Luchko, Y.1    Gorenflo, R.2
  • 14
    • 84862816430 scopus 로고    scopus 로고
    • Maximum principle for the fractional differential equations and its application
    • Proceedings of FDA'10, the 4th IFAC Workshop Fractional Differentiation and Applications, Badajoz, Spain, October 18-22.
    • Y. Luchko, Maximum principle for the fractional differential equations and its application, in: Proceedings of FDA'10, the 4th IFAC Workshop Fractional Differentiation and Applications, Badajoz, Spain, October 18-22, 2010.
    • (2010)
    • Luchko, Y.1
  • 15
    • 77957822720 scopus 로고    scopus 로고
    • Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation
    • Luchko Y. Initial-boundary-value problems for the generalized multi-term time-fractional diffusion equation. J. Math. Anal. Appl. 2011, 374:538-548.
    • (2011) J. Math. Anal. Appl. , vol.374 , pp. 538-548
    • Luchko, Y.1
  • 18
    • 30244460855 scopus 로고    scopus 로고
    • The fundamental solutions for the fractional diffusion-wave equation
    • Mainardi F. The fundamental solutions for the fractional diffusion-wave equation. Appl. Math. Lett. 1996, 9:23-28.
    • (1996) Appl. Math. Lett. , vol.9 , pp. 23-28
    • Mainardi, F.1
  • 19
    • 0001983732 scopus 로고    scopus 로고
    • Fractional calculus: some basic problems in continuum and statistical mechanics
    • Springer, New York, A. Carpinteri, F. Mainardi (Eds.)
    • Mainardi F. Fractional calculus: some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics 1997, 291-348. Springer, New York. A. Carpinteri, F. Mainardi (Eds.).
    • (1997) Fractals and Fractional Calculus in Continuum Mechanics , pp. 291-348
    • Mainardi, F.1
  • 21
    • 4444368867 scopus 로고    scopus 로고
    • Finite difference approximations for fractional advection-dispersion flow equation
    • Meerschaert M., Tadjeran C. Finite difference approximations for fractional advection-dispersion flow equation. J. Comput. Appl. Math. 2004, 172:65-77.
    • (2004) J. Comput. Appl. Math. , vol.172 , pp. 65-77
    • Meerschaert, M.1    Tadjeran, C.2
  • 22
    • 79952184887 scopus 로고    scopus 로고
    • Distributed-order fractional diffusions on bounded domains
    • Meerschaert M., Nane E., Vellaisamy P. Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 2011, 379:216-228.
    • (2011) J. Math. Anal. Appl. , vol.379 , pp. 216-228
    • Meerschaert, M.1    Nane, E.2    Vellaisamy, P.3
  • 23
    • 0002641421 scopus 로고    scopus 로고
    • The random walk's guide to anomalous diffusion: a fractional dynamics approach
    • Metzler R., Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 2000, 339:1-77.
    • (2000) Phys. Rep. , vol.339 , pp. 1-77
    • Metzler, R.1    Klafter, J.2
  • 24
    • 4043151477 scopus 로고    scopus 로고
    • The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics
    • Metzler R., Klafter J. The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 2004, 37:161-208.
    • (2004) J. Phys. A: Math. Gen. , vol.37 , pp. 161-208
    • Metzler, R.1    Klafter, J.2
  • 25
    • 56249105398 scopus 로고    scopus 로고
    • Analytical solution of the advection-diffusion equation for a ground-level finite area source
    • Park Y.S., Baik J.Jin. Analytical solution of the advection-diffusion equation for a ground-level finite area source. Atmos. Environ. 2008, 42:9063-9069.
    • (2008) Atmos. Environ. , vol.42 , pp. 9063-9069
    • Park, Y.S.1    Baik, J.2
  • 27
    • 33846862055 scopus 로고    scopus 로고
    • Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation
    • Povstenko Y.Z. Two-dimensional axisymmetric stresses exerted by instantaneous pulses and sources of diffusion in an infinite space in a case of time-fractional diffusion equation. Int. J. Solids Struct. 2009, 44:2324-2348.
    • (2009) Int. J. Solids Struct. , vol.44 , pp. 2324-2348
    • Povstenko, Y.Z.1
  • 28
    • 77949262762 scopus 로고    scopus 로고
    • Signaling problem for time-fractional diffusion-wave equation in a half-plane
    • Povstenko Y.Z. Signaling problem for time-fractional diffusion-wave equation in a half-plane. Fract. Calc. Appl. Anal. 2008, 11:329-352.
    • (2008) Fract. Calc. Appl. Anal. , vol.11 , pp. 329-352
    • Povstenko, Y.Z.1
  • 29
    • 38349128567 scopus 로고    scopus 로고
    • Fundamental solution to three dimensional diffusion-wave equation and associated diffusive stresses
    • Povstenko Y.Z. Fundamental solution to three dimensional diffusion-wave equation and associated diffusive stresses. Chaos Solitons Fractals 2008, 36:961-972.
    • (2008) Chaos Solitons Fractals , vol.36 , pp. 961-972
    • Povstenko, Y.Z.1
  • 30
    • 84862805797 scopus 로고    scopus 로고
    • Analysis of fundamental solutions to fractional diffusion-wave equation in polar coordinates
    • Povstenko Y.Z. Analysis of fundamental solutions to fractional diffusion-wave equation in polar coordinates. Sci. Issues Jan Długosz Univ. Czȩstochowa, Math. 2009, XIV:97-104.
    • (2009) Sci. Issues Jan Długosz Univ. Czȩstochowa, Math. , vol.14 , pp. 97-104
    • Povstenko, Y.Z.1
  • 31
    • 77949274545 scopus 로고    scopus 로고
    • Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry
    • Povstenko Y.Z. Signaling problem for time-fractional diffusion-wave equation in a half-space in the case of angular symmetry. Nonlinear Dynam. 2010, 55:593-605.
    • (2010) Nonlinear Dynam. , vol.55 , pp. 593-605
    • Povstenko, Y.Z.1
  • 32
    • 84862781447 scopus 로고    scopus 로고
    • Theories of thermoelasticity based on space-time-fractional Cattaneo-type equations
    • Proceedings of FDA'10, the 4th IFAC Workshop Fractional Differentiation and Its Applications, Badajoz, Spain, October 18-20.
    • Y.Z. Povstenko, Theories of thermoelasticity based on space-time-fractional Cattaneo-type equations, in: Proceedings of FDA'10, the 4th IFAC Workshop Fractional Differentiation and Its Applications, Badajoz, Spain, October 18-20, 2010.
    • (2010)
    • Povstenko, Y.Z.1
  • 33
    • 79953328485 scopus 로고    scopus 로고
    • Solutions of the space-time fractional Cattaneo diffusion equation
    • Qi H., Jiang X. Solutions of the space-time fractional Cattaneo diffusion equation. Physica A 2011, 390:1876-1883.
    • (2011) Physica A , vol.390 , pp. 1876-1883
    • Qi, H.1    Jiang, X.2
  • 34
    • 33646191893 scopus 로고    scopus 로고
    • Computational aspects of FEM approximation of fractional advection dispersion equation on boundary domains in R2
    • Roop J.P. Computational aspects of FEM approximation of fractional advection dispersion equation on boundary domains in R2. J. Comput. Appl. Math. 2006, 193(1):243-268.
    • (2006) J. Comput. Appl. Math. , vol.193 , Issue.1 , pp. 243-268
    • Roop, J.P.1
  • 35
    • 70449641482 scopus 로고    scopus 로고
    • Nonlinear abstract boundary value problems modelling atmospheric dispersion of pollutants
    • Shakhmurov V.B., Shahmurova A. Nonlinear abstract boundary value problems modelling atmospheric dispersion of pollutants. Nonlinear Anal. Real World Appl. 2010, 11:932-951.
    • (2010) Nonlinear Anal. Real World Appl. , vol.11 , pp. 932-951
    • Shakhmurov, V.B.1    Shahmurova, A.2
  • 36
    • 48749097743 scopus 로고    scopus 로고
    • Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order
    • Shen S., Liu F., Anh V. Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order. J. Appl. Math. Comput. 2008, 28:147-164.
    • (2008) J. Appl. Math. Comput. , vol.28 , pp. 147-164
    • Shen, S.1    Liu, F.2    Anh, V.3
  • 37
    • 57649137996 scopus 로고    scopus 로고
    • The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation
    • Shen S., Liu F., Anh V., Turner I. The fundamental solution and numerical solution of the Riesz fractional advection-dispersion equation. IMA J. Appl. Math. 2008, 73:850-872.
    • (2008) IMA J. Appl. Math. , vol.73 , pp. 850-872
    • Shen, S.1    Liu, F.2    Anh, V.3    Turner, I.4
  • 38
    • 79951851714 scopus 로고    scopus 로고
    • Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation
    • Shen S., Liu F., Anh V. Numerical approximations and solution techniques for the space-time Riesz-Caputo fractional advection-diffusion equation. Numer. Algorithms 2011, 56(3):383-403.
    • (2011) Numer. Algorithms , vol.56 , Issue.3 , pp. 383-403
    • Shen, S.1    Liu, F.2    Anh, V.3
  • 39
    • 79952190735 scopus 로고    scopus 로고
    • Numerical method for solving diffusion-wave phenomena
    • Stojanovic M. Numerical method for solving diffusion-wave phenomena. J. Comput. Appl. Math. 2011, 235(10):3121-3137.
    • (2011) J. Comput. Appl. Math. , vol.235 , Issue.10 , pp. 3121-3137
    • Stojanovic, M.1
  • 40
    • 77956256476 scopus 로고    scopus 로고
    • Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian
    • Treeby B.E., Cox B.T. Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am. 2010, 127:2741-2748.
    • (2010) J. Acoust. Soc. Am. , vol.127 , pp. 2741-2748
    • Treeby, B.E.1    Cox, B.T.2
  • 42
    • 79957886188 scopus 로고    scopus 로고
    • A fast characteristic finite difference method for fractional advection-diffusion equations
    • Wang K., Wang H. A fast characteristic finite difference method for fractional advection-diffusion equations. Adv. Water Resour. 2011, 34:810-816.
    • (2011) Adv. Water Resour. , vol.34 , pp. 810-816
    • Wang, K.1    Wang, H.2
  • 43
    • 69249214155 scopus 로고    scopus 로고
    • Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
    • Yang Q., Liu F., Turner I. Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 2010, 34:200-218.
    • (2010) Appl. Math. Model. , vol.34 , pp. 200-218
    • Yang, Q.1    Liu, F.2    Turner, I.3
  • 44
    • 62349097511 scopus 로고    scopus 로고
    • Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications
    • Zhang Y., Benson D.A., Reeves D.M. Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Adv. Water Resour. 2009, 32:561-581.
    • (2009) Adv. Water Resour. , vol.32 , pp. 561-581
    • Zhang, Y.1    Benson, D.A.2    Reeves, D.M.3
  • 45
    • 77955515765 scopus 로고    scopus 로고
    • Nonlocal Cauchy problem for fractional evolution equations
    • Zhou Y., Jiao F. Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. Real World Appl. 2010, 11:4465-4475.
    • (2010) Nonlinear Anal. Real World Appl. , vol.11 , pp. 4465-4475
    • Zhou, Y.1    Jiao, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.