메뉴 건너뛰기




Volumn 60, Issue 10, 2010, Pages 2871-2879

Convergence of the variational iteration method for solving multi-order fractional differential equations

Author keywords

Convergence; Fractional calculus; Fractional differential equations; Variational iteration method

Indexed keywords

APPROXIMATE SOLUTION; CONVERGENCE; ERROR ESTIMATES; FRACTIONAL CALCULUS; FRACTIONAL DIFFERENTIAL EQUATIONS; NUMERICAL RESULTS; VARIATIONAL ITERATION METHOD;

EID: 78049255335     PISSN: 08981221     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.camwa.2010.09.044     Document Type: Article
Times cited : (86)

References (39)
  • 1
    • 0003548431 scopus 로고    scopus 로고
    • The initial value problem for some fractional differential equations with the Caputo derivative
    • Fachbreich Mathematik und Informatik, Freic Universitat Berlin
    • A.Y. Luchko, R. Groreflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint Series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998.
    • (1998) Preprint Series A08-98
    • Luchko, A.Y.1    Groreflo, R.2
  • 3
    • 0022076968 scopus 로고
    • Fractional calculus in the transient analysis of viscoelastically damped structures
    • R.L. Bagley, and P.J. Torvik Fractional calculus in the transient analysis of viscoelastically damped structures AIAA J. 23 6 1983 918 925
    • (1983) AIAA J. , vol.23 , Issue.6 , pp. 918-925
    • Bagley, R.L.1    Torvik, P.J.2
  • 4
    • 0010178279 scopus 로고
    • An analog simulation of non-integer order transfer functions for analysis of electrode processes
    • M. Ichise, Y. Nagayanagi, and T. Kojima An analog simulation of non-integer order transfer functions for analysis of electrode processes J. Electroanal. Chem. 33 1971 253 265
    • (1971) J. Electroanal. Chem. , vol.33 , pp. 253-265
    • Ichise, M.1    Nagayanagi, Y.2    Kojima, T.3
  • 5
    • 0021647967 scopus 로고
    • Application of positive reality principle to metal electrode linear polarization phenomena
    • H.H. Sun, B. Onaral, and Y. Tsao Application of positive reality principle to metal electrode linear polarization phenomena IEEE Trans. Biomed. Eng. BME-31 10 1984 664 674
    • (1984) IEEE Trans. Biomed. Eng. , vol.31 , Issue.10 , pp. 664-674
    • Sun, H.H.1    Onaral, B.2    Tsao, Y.3
  • 6
    • 0021424253 scopus 로고
    • Linear approximation of transfer function with a pole of fractional order
    • H.H. Sun, A.A. Abdelwahab, and B. Onaral Linear approximation of transfer function with a pole of fractional order IEEE Trans. Autom. Control AC-29 5 1984 441 444
    • (1984) IEEE Trans. Autom. Control , vol.29 , Issue.5 , pp. 441-444
    • Sun, H.H.1    Abdelwahab, A.A.2    Onaral, B.3
  • 7
    • 3342927052 scopus 로고    scopus 로고
    • Chaos and hyperchaos in the fractional-order Rssle equations
    • Chunguang Li, and Guanrong Chen Chaos and hyperchaos in the fractional-order Rssle equations Physica A 341 2004 55 61
    • (2004) Physica A , vol.341 , pp. 55-61
    • Li, C.1    Chen, G.2
  • 8
    • 84962571892 scopus 로고
    • RungeKutta theory for Volterra and Abel integral equations of the second kind
    • C. Lubich RungeKutta theory for Volterra and Abel integral equations of the second kind Math. Comp. 41 1983 87 102
    • (1983) Math. Comp. , vol.41 , pp. 87-102
    • Lubich, C.1
  • 9
    • 84966227123 scopus 로고
    • Fractional linear multistep methods for AbelVolterra integral equations of the second kind
    • C. Lubich Fractional linear multistep methods for AbelVolterra integral equations of the second kind Math. Comp. 45 1985 463 469
    • (1985) Math. Comp. , vol.45 , pp. 463-469
    • Lubich, C.1
  • 10
    • 0000717432 scopus 로고
    • Discretized fractional calculus
    • C. Lubich Discretized fractional calculus SIAM J. Math. Anal. 17 1986 704 719
    • (1986) SIAM J. Math. Anal. , vol.17 , pp. 704-719
    • Lubich, C.1
  • 11
    • 0001618393 scopus 로고    scopus 로고
    • An algorithm for the numerical solution of differential equations of fractional order
    • K. Diethelm An algorithm for the numerical solution of differential equations of fractional order Electron. Trans. Numer. Anal. 5 1997 1 6 (Pubitemid 38870919)
    • (1997) Electronic Transactions on Numerical Analysis , vol.5 , pp. 1-6
    • Diethelm, K.1
  • 12
    • 0043044718 scopus 로고    scopus 로고
    • Numerical solution of fractional order differential equations by extrapolation
    • K. Diethelm, and G. Walz Numerical solution of fractional order differential equations by extrapolation Numer. Algorithms 16 1997 231 253 (Pubitemid 127429647)
    • (1997) Numerical Algorithms , vol.16 , Issue.3-4 , pp. 231-253
    • Diethelm, K.1    Walz, G.2
  • 13
    • 0036650479 scopus 로고    scopus 로고
    • A predictorcorrector approach for the numerical solution of fractional differential equations
    • K. Diethelm, N.J. Ford, and Alan D. Freed A predictorcorrector approach for the numerical solution of fractional differential equations Nonlinear Dynam. 29 2002 3 22
    • (2002) Nonlinear Dynam. , vol.29 , pp. 3-22
    • Diethelm, K.1    Ford, N.J.2    Freed, A.D.3
  • 14
    • 0012899160 scopus 로고    scopus 로고
    • Numerical solution of the BagleyTorvik equation
    • K. Diethelm, and N.J. Ford Numerical solution of the BagleyTorvik equation BIT 42 2002 490 507
    • (2002) BIT , vol.42 , pp. 490-507
    • Diethelm, K.1    Ford, N.J.2
  • 15
    • 1542425102 scopus 로고    scopus 로고
    • Numerical solution of the space fractional FokkerPlanck equation
    • F. Liu, V. Anh, and I. Turner Numerical solution of the space fractional FokkerPlanck equation J. Comput. Appl. Math. 166 2004 209 219
    • (2004) J. Comput. Appl. Math. , vol.166 , pp. 209-219
    • Liu, F.1    Anh, V.2    Turner, I.3
  • 16
    • 34547673244 scopus 로고    scopus 로고
    • Stability and convergence of the difference methods for the spacetime fractional advectiondiffusion equation
    • F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage Stability and convergence of the difference methods for the spacetime fractional advectiondiffusion equation Appl. Math. Comput. 191 2007 12 20
    • (2007) Appl. Math. Comput. , vol.191 , pp. 12-20
    • Liu, F.1    Zhuang, P.2    Anh, V.3    Turner, I.4    Burrage, K.5
  • 17
    • 33748663764 scopus 로고    scopus 로고
    • Numerical solution of linear multi-order differential equations of fractional order
    • K. Diethelm, and Y. Luchko Numerical solution of linear multi-order differential equations of fractional order J. Comput. Anal. Appl. 6 2004 243 263
    • (2004) J. Comput. Anal. Appl. , vol.6 , pp. 243-263
    • Diethelm, K.1    Luchko, Y.2
  • 18
    • 0037113861 scopus 로고    scopus 로고
    • The numerical solution of linear multi-order fractional differential equations: Systems of equations
    • J.T. Edwards, N.J. Ford, and A.C. Simpson The numerical solution of linear multi-order fractional differential equations: systems of equations J. Comput. Appl. Math. 148 2002 401 418
    • (2002) J. Comput. Appl. Math. , vol.148 , pp. 401-418
    • Edwards, J.T.1    Ford, N.J.2    Simpson, A.C.3
  • 19
    • 9744276851 scopus 로고    scopus 로고
    • Numerical methods for multi-term fractional (arbitrary) orders differential equations
    • A.E.M. El-Mesiry, A.M.A. El-Sayed, and H.A.A. El-Saka Numerical methods for multi-term fractional (arbitrary) orders differential equations Appl. Math. Comput. 160 3 2005 683 699
    • (2005) Appl. Math. Comput. , vol.160 , Issue.3 , pp. 683-699
    • El-Mesiry, A.E.M.1    El-Sayed, A.M.A.2    El-Saka, H.A.A.3
  • 20
    • 39149140685 scopus 로고    scopus 로고
    • Application of generalized differential transform method to multi-order fractional differential equations
    • DOI 10.1016/j.cnsns.2007.02.006, PII S1007570407000329
    • Vedat Suat Erturk, Shaher Momani, and Zaid Odibat Application of generalized differential transform method to multi-order fractional differential equations Commun. Nonlinear Sci. Numer. Simul. 13 2008 1642 1654 (Pubitemid 351250728)
    • (2008) Communications in Nonlinear Science and Numerical Simulation , vol.13 , Issue.8 , pp. 1642-1654
    • Erturk, V.S.1    Momani, S.2    Odibat, Z.3
  • 21
    • 35349007940 scopus 로고    scopus 로고
    • Numerical studies for a multi-order fractional differential equation
    • N.H. Sweilam, M.M. Khader, and R.F. Al-Bar Numerical studies for a multi-order fractional differential equation Phys. Lett. A 371 2007 26 33
    • (2007) Phys. Lett. A , vol.371 , pp. 26-33
    • Sweilam, N.H.1    Khader, M.M.2    Al-Bar, R.F.3
  • 22
    • 0007140364 scopus 로고    scopus 로고
    • A new approach to linear partial differential equations
    • J.H. He A new approach to linear partial differential equations Commun. Nonlinear Sci. Numer. Simul. 2 4 1997 230 235
    • (1997) Commun. Nonlinear Sci. Numer. Simul. , vol.2 , Issue.4 , pp. 230-235
    • He, J.H.1
  • 23
    • 0347763940 scopus 로고    scopus 로고
    • Some applications of nonlinear fractional differential equations and their approximations
    • J.H. He Some applications of nonlinear fractional differential equations and their approximations Bull. Sci. Technol. 15 12 1999 86 90
    • (1999) Bull. Sci. Technol. , vol.15 , Issue.12 , pp. 86-90
    • He, J.H.1
  • 24
    • 0032308350 scopus 로고    scopus 로고
    • Approximate solution of non linear differential equation with convolution product nonlinearities
    • J.H. He Approximate solution of non linear differential equation with convolution product nonlinearities Comput. Methods Appl. Mech. Engrg. 167 1998 69 73
    • (1998) Comput. Methods Appl. Mech. Engrg. , vol.167 , pp. 69-73
    • He, J.H.1
  • 25
    • 0006996396 scopus 로고
    • General use of the Lagrange multiplier in non-linear mathematical physics
    • Pergamon Press New York
    • M. Inokuti, H. Sekine, and T. Mura General use of the Lagrange multiplier in non-linear mathematical physics Variational Methods in the Mechanics of Solids 1978 Pergamon Press New York 156 162
    • (1978) Variational Methods in the Mechanics of Solids , pp. 156-162
    • Inokuti, M.1    Sekine, H.2    Mura, T.3
  • 26
    • 34548233218 scopus 로고    scopus 로고
    • Application of variational iteration method to heat and wave-like equations
    • B. Batiha, M.S.M. Noorani, and I. Hashim Application of variational iteration method to heat and wave-like equations Phys. Lett. A 369 12 2007 55 61
    • (2007) Phys. Lett. A , vol.369 , Issue.12 , pp. 55-61
    • Batiha, B.1    Noorani, M.S.M.2    Hashim, I.3
  • 27
    • 36248964808 scopus 로고    scopus 로고
    • The multistage variational iteration method for class of nonlinear system of ODEs
    • B. Batiha, M.S.M. Noorani, I. Hashim, and E.S. Ismail The multistage variational iteration method for class of nonlinear system of ODEs Phys. Scr. 76 2007 388 392
    • (2007) Phys. Scr. , vol.76 , pp. 388-392
    • Batiha, B.1    Noorani, M.S.M.2    Hashim, I.3    Ismail, E.S.4
  • 28
    • 34748920649 scopus 로고    scopus 로고
    • The numerical simulation for stiff systems of ordinary differential equations
    • M.T. Darvishi, F. Khani, and A.A. Soliman The numerical simulation for stiff systems of ordinary differential equations Comput. Math. Appl. 54 2007 1055 1063
    • (2007) Comput. Math. Appl. , vol.54 , pp. 1055-1063
    • Darvishi, M.T.1    Khani, F.2    Soliman, A.A.3
  • 29
    • 51049124292 scopus 로고    scopus 로고
    • Convergence of the variational iteration method for solving linear systems of ODEs with constant coefficients
    • Davod Khojasteh Salkuyeh Convergence of the variational iteration method for solving linear systems of ODEs with constant coefficients Comput. Math. Appl. 56 2008 2027 2033
    • (2008) Comput. Math. Appl. , vol.56 , pp. 2027-2033
    • Salkuyeh, D.K.1
  • 30
    • 33748293091 scopus 로고    scopus 로고
    • Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives
    • G.E. Draganescu Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives J. Math. Phys. 47 8 2006 082902
    • (2006) J. Math. Phys. , vol.47 , Issue.8 , pp. 082902
    • Draganescu, G.E.1
  • 31
    • 30344464250 scopus 로고    scopus 로고
    • Application of variational iteration method to nonlinear differential equations of fractional order
    • Z. Odibat, and S. Momani Application of variational iteration method to nonlinear differential equations of fractional order Int. J. Nonlinear Sci. Numer. Simul. 1 7 2006 15 27
    • (2006) Int. J. Nonlinear Sci. Numer. Simul. , vol.1 , Issue.7 , pp. 15-27
    • Odibat, Z.1    Momani, S.2
  • 32
    • 33646878106 scopus 로고    scopus 로고
    • Analytic approach to linear fractional partial differential equations arising in fluid mechanics
    • S. Momani, and Z. Odibat Analytic approach to linear fractional partial differential equations arising in fluid mechanics Phys. Lett. A 355 2006 271 279
    • (2006) Phys. Lett. A , vol.355 , pp. 271-279
    • Momani, S.1    Odibat, Z.2
  • 33
    • 24944474278 scopus 로고    scopus 로고
    • Application of He's variational iteration meathod to Helmhotz equation
    • S. Momani, and S. Abuasad Application of He's variational iteration meathod to Helmhotz equation Chaos Solitons Fractals 27 5 2006 1119 1123
    • (2006) Chaos Solitons Fractals , vol.27 , Issue.5 , pp. 1119-1123
    • Momani, S.1    Abuasad, S.2
  • 34
    • 33748425302 scopus 로고    scopus 로고
    • Numerical comparison of methods for solving linear differential equations of fractional order
    • S. Momani, and Z. Odibat Numerical comparison of methods for solving linear differential equations of fractional order Chaos Solitons Fractals 31 5 2007 1248 1255
    • (2007) Chaos Solitons Fractals , vol.31 , Issue.5 , pp. 1248-1255
    • Momani, S.1    Odibat, Z.2
  • 35
    • 34250661428 scopus 로고    scopus 로고
    • Numerical approach to differential equations of fractional order
    • S. Momani, and Z. Odibat Numerical approach to differential equations of fractional order J. Comput. Appl. Math. 207 2007 96 110
    • (2007) J. Comput. Appl. Math. , vol.207 , pp. 96-110
    • Momani, S.1    Odibat, Z.2
  • 36
    • 34548650141 scopus 로고    scopus 로고
    • Numerical solution of FokkerPlanck equation with space- and time-fractional derivatives
    • Z. Odibat, and S. Momani Numerical solution of FokkerPlanck equation with space- and time-fractional derivatives Phys. Lett. A 369 56 2007 349 358
    • (2007) Phys. Lett. A , vol.369 , Issue.56 , pp. 349-358
    • Odibat, Z.1    Momani, S.2
  • 37
    • 38049162125 scopus 로고    scopus 로고
    • Variational iteration method for solving the space- and time-fractional KdV equation
    • S. Momani, Z. Odibat, and A. Alawneh Variational iteration method for solving the space- and time-fractional KdV equation Numer. Methods Partial Differential Equations 24 1 2007 262 271
    • (2007) Numer. Methods Partial Differential Equations , vol.24 , Issue.1 , pp. 262-271
    • Momani, S.1    Odibat, Z.2    Alawneh, A.3
  • 38
    • 60549112414 scopus 로고    scopus 로고
    • Variational iteration method for fractional heat- and wave-like equations
    • R. Yulita Molliq, M.S.M. Noorani, and I. Hashim Variational iteration method for fractional heat- and wave-like equations Nonlinear Anal. RWA 10 2009 1854 1869
    • (2009) Nonlinear Anal. RWA , vol.10 , pp. 1854-1869
    • Yulita Molliq, R.1    Noorani, M.S.M.2    Hashim, I.3
  • 39
    • 31444443560 scopus 로고    scopus 로고
    • A numeric simulation an explicit solutions of KdVBurgers' and Lax's seventh-order KdV equations
    • A.A. Soliman A numeric simulation an explicit solutions of KdVBurgers' and Lax's seventh-order KdV equations Chaos Solitons Fractals 29 2 2006 294 302
    • (2006) Chaos Solitons Fractals , vol.29 , Issue.2 , pp. 294-302
    • Soliman, A.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.