-
1
-
-
0003548431
-
The initial value problem for some fractional differential equations with the Caputo derivative
-
Fachbreich Mathematik und Informatik, Freic Universitat Berlin
-
A.Y. Luchko, R. Groreflo, The initial value problem for some fractional differential equations with the Caputo derivative, Preprint Series A08-98, Fachbreich Mathematik und Informatik, Freic Universitat Berlin, 1998.
-
(1998)
Preprint Series A08-98
-
-
Luchko, A.Y.1
Groreflo, R.2
-
3
-
-
0022076968
-
Fractional calculus in the transient analysis of viscoelastically damped structures
-
R.L. Bagley, and P.J. Torvik Fractional calculus in the transient analysis of viscoelastically damped structures AIAA J. 23 6 1983 918 925
-
(1983)
AIAA J.
, vol.23
, Issue.6
, pp. 918-925
-
-
Bagley, R.L.1
Torvik, P.J.2
-
4
-
-
0010178279
-
An analog simulation of non-integer order transfer functions for analysis of electrode processes
-
M. Ichise, Y. Nagayanagi, and T. Kojima An analog simulation of non-integer order transfer functions for analysis of electrode processes J. Electroanal. Chem. 33 1971 253 265
-
(1971)
J. Electroanal. Chem.
, vol.33
, pp. 253-265
-
-
Ichise, M.1
Nagayanagi, Y.2
Kojima, T.3
-
5
-
-
0021647967
-
Application of positive reality principle to metal electrode linear polarization phenomena
-
H.H. Sun, B. Onaral, and Y. Tsao Application of positive reality principle to metal electrode linear polarization phenomena IEEE Trans. Biomed. Eng. BME-31 10 1984 664 674
-
(1984)
IEEE Trans. Biomed. Eng.
, vol.31
, Issue.10
, pp. 664-674
-
-
Sun, H.H.1
Onaral, B.2
Tsao, Y.3
-
6
-
-
0021424253
-
Linear approximation of transfer function with a pole of fractional order
-
H.H. Sun, A.A. Abdelwahab, and B. Onaral Linear approximation of transfer function with a pole of fractional order IEEE Trans. Autom. Control AC-29 5 1984 441 444
-
(1984)
IEEE Trans. Autom. Control
, vol.29
, Issue.5
, pp. 441-444
-
-
Sun, H.H.1
Abdelwahab, A.A.2
Onaral, B.3
-
7
-
-
3342927052
-
Chaos and hyperchaos in the fractional-order Rssle equations
-
Chunguang Li, and Guanrong Chen Chaos and hyperchaos in the fractional-order Rssle equations Physica A 341 2004 55 61
-
(2004)
Physica A
, vol.341
, pp. 55-61
-
-
Li, C.1
Chen, G.2
-
8
-
-
84962571892
-
RungeKutta theory for Volterra and Abel integral equations of the second kind
-
C. Lubich RungeKutta theory for Volterra and Abel integral equations of the second kind Math. Comp. 41 1983 87 102
-
(1983)
Math. Comp.
, vol.41
, pp. 87-102
-
-
Lubich, C.1
-
9
-
-
84966227123
-
Fractional linear multistep methods for AbelVolterra integral equations of the second kind
-
C. Lubich Fractional linear multistep methods for AbelVolterra integral equations of the second kind Math. Comp. 45 1985 463 469
-
(1985)
Math. Comp.
, vol.45
, pp. 463-469
-
-
Lubich, C.1
-
10
-
-
0000717432
-
Discretized fractional calculus
-
C. Lubich Discretized fractional calculus SIAM J. Math. Anal. 17 1986 704 719
-
(1986)
SIAM J. Math. Anal.
, vol.17
, pp. 704-719
-
-
Lubich, C.1
-
11
-
-
0001618393
-
An algorithm for the numerical solution of differential equations of fractional order
-
K. Diethelm An algorithm for the numerical solution of differential equations of fractional order Electron. Trans. Numer. Anal. 5 1997 1 6 (Pubitemid 38870919)
-
(1997)
Electronic Transactions on Numerical Analysis
, vol.5
, pp. 1-6
-
-
Diethelm, K.1
-
12
-
-
0043044718
-
Numerical solution of fractional order differential equations by extrapolation
-
K. Diethelm, and G. Walz Numerical solution of fractional order differential equations by extrapolation Numer. Algorithms 16 1997 231 253 (Pubitemid 127429647)
-
(1997)
Numerical Algorithms
, vol.16
, Issue.3-4
, pp. 231-253
-
-
Diethelm, K.1
Walz, G.2
-
13
-
-
0036650479
-
A predictorcorrector approach for the numerical solution of fractional differential equations
-
K. Diethelm, N.J. Ford, and Alan D. Freed A predictorcorrector approach for the numerical solution of fractional differential equations Nonlinear Dynam. 29 2002 3 22
-
(2002)
Nonlinear Dynam.
, vol.29
, pp. 3-22
-
-
Diethelm, K.1
Ford, N.J.2
Freed, A.D.3
-
14
-
-
0012899160
-
Numerical solution of the BagleyTorvik equation
-
K. Diethelm, and N.J. Ford Numerical solution of the BagleyTorvik equation BIT 42 2002 490 507
-
(2002)
BIT
, vol.42
, pp. 490-507
-
-
Diethelm, K.1
Ford, N.J.2
-
15
-
-
1542425102
-
Numerical solution of the space fractional FokkerPlanck equation
-
F. Liu, V. Anh, and I. Turner Numerical solution of the space fractional FokkerPlanck equation J. Comput. Appl. Math. 166 2004 209 219
-
(2004)
J. Comput. Appl. Math.
, vol.166
, pp. 209-219
-
-
Liu, F.1
Anh, V.2
Turner, I.3
-
16
-
-
34547673244
-
Stability and convergence of the difference methods for the spacetime fractional advectiondiffusion equation
-
F. Liu, P. Zhuang, V. Anh, I. Turner, and K. Burrage Stability and convergence of the difference methods for the spacetime fractional advectiondiffusion equation Appl. Math. Comput. 191 2007 12 20
-
(2007)
Appl. Math. Comput.
, vol.191
, pp. 12-20
-
-
Liu, F.1
Zhuang, P.2
Anh, V.3
Turner, I.4
Burrage, K.5
-
17
-
-
33748663764
-
Numerical solution of linear multi-order differential equations of fractional order
-
K. Diethelm, and Y. Luchko Numerical solution of linear multi-order differential equations of fractional order J. Comput. Anal. Appl. 6 2004 243 263
-
(2004)
J. Comput. Anal. Appl.
, vol.6
, pp. 243-263
-
-
Diethelm, K.1
Luchko, Y.2
-
18
-
-
0037113861
-
The numerical solution of linear multi-order fractional differential equations: Systems of equations
-
J.T. Edwards, N.J. Ford, and A.C. Simpson The numerical solution of linear multi-order fractional differential equations: systems of equations J. Comput. Appl. Math. 148 2002 401 418
-
(2002)
J. Comput. Appl. Math.
, vol.148
, pp. 401-418
-
-
Edwards, J.T.1
Ford, N.J.2
Simpson, A.C.3
-
19
-
-
9744276851
-
Numerical methods for multi-term fractional (arbitrary) orders differential equations
-
A.E.M. El-Mesiry, A.M.A. El-Sayed, and H.A.A. El-Saka Numerical methods for multi-term fractional (arbitrary) orders differential equations Appl. Math. Comput. 160 3 2005 683 699
-
(2005)
Appl. Math. Comput.
, vol.160
, Issue.3
, pp. 683-699
-
-
El-Mesiry, A.E.M.1
El-Sayed, A.M.A.2
El-Saka, H.A.A.3
-
20
-
-
39149140685
-
Application of generalized differential transform method to multi-order fractional differential equations
-
DOI 10.1016/j.cnsns.2007.02.006, PII S1007570407000329
-
Vedat Suat Erturk, Shaher Momani, and Zaid Odibat Application of generalized differential transform method to multi-order fractional differential equations Commun. Nonlinear Sci. Numer. Simul. 13 2008 1642 1654 (Pubitemid 351250728)
-
(2008)
Communications in Nonlinear Science and Numerical Simulation
, vol.13
, Issue.8
, pp. 1642-1654
-
-
Erturk, V.S.1
Momani, S.2
Odibat, Z.3
-
21
-
-
35349007940
-
Numerical studies for a multi-order fractional differential equation
-
N.H. Sweilam, M.M. Khader, and R.F. Al-Bar Numerical studies for a multi-order fractional differential equation Phys. Lett. A 371 2007 26 33
-
(2007)
Phys. Lett. A
, vol.371
, pp. 26-33
-
-
Sweilam, N.H.1
Khader, M.M.2
Al-Bar, R.F.3
-
22
-
-
0007140364
-
A new approach to linear partial differential equations
-
J.H. He A new approach to linear partial differential equations Commun. Nonlinear Sci. Numer. Simul. 2 4 1997 230 235
-
(1997)
Commun. Nonlinear Sci. Numer. Simul.
, vol.2
, Issue.4
, pp. 230-235
-
-
He, J.H.1
-
23
-
-
0347763940
-
Some applications of nonlinear fractional differential equations and their approximations
-
J.H. He Some applications of nonlinear fractional differential equations and their approximations Bull. Sci. Technol. 15 12 1999 86 90
-
(1999)
Bull. Sci. Technol.
, vol.15
, Issue.12
, pp. 86-90
-
-
He, J.H.1
-
24
-
-
0032308350
-
Approximate solution of non linear differential equation with convolution product nonlinearities
-
J.H. He Approximate solution of non linear differential equation with convolution product nonlinearities Comput. Methods Appl. Mech. Engrg. 167 1998 69 73
-
(1998)
Comput. Methods Appl. Mech. Engrg.
, vol.167
, pp. 69-73
-
-
He, J.H.1
-
25
-
-
0006996396
-
General use of the Lagrange multiplier in non-linear mathematical physics
-
Pergamon Press New York
-
M. Inokuti, H. Sekine, and T. Mura General use of the Lagrange multiplier in non-linear mathematical physics Variational Methods in the Mechanics of Solids 1978 Pergamon Press New York 156 162
-
(1978)
Variational Methods in the Mechanics of Solids
, pp. 156-162
-
-
Inokuti, M.1
Sekine, H.2
Mura, T.3
-
26
-
-
34548233218
-
Application of variational iteration method to heat and wave-like equations
-
B. Batiha, M.S.M. Noorani, and I. Hashim Application of variational iteration method to heat and wave-like equations Phys. Lett. A 369 12 2007 55 61
-
(2007)
Phys. Lett. A
, vol.369
, Issue.12
, pp. 55-61
-
-
Batiha, B.1
Noorani, M.S.M.2
Hashim, I.3
-
27
-
-
36248964808
-
The multistage variational iteration method for class of nonlinear system of ODEs
-
B. Batiha, M.S.M. Noorani, I. Hashim, and E.S. Ismail The multistage variational iteration method for class of nonlinear system of ODEs Phys. Scr. 76 2007 388 392
-
(2007)
Phys. Scr.
, vol.76
, pp. 388-392
-
-
Batiha, B.1
Noorani, M.S.M.2
Hashim, I.3
Ismail, E.S.4
-
28
-
-
34748920649
-
The numerical simulation for stiff systems of ordinary differential equations
-
M.T. Darvishi, F. Khani, and A.A. Soliman The numerical simulation for stiff systems of ordinary differential equations Comput. Math. Appl. 54 2007 1055 1063
-
(2007)
Comput. Math. Appl.
, vol.54
, pp. 1055-1063
-
-
Darvishi, M.T.1
Khani, F.2
Soliman, A.A.3
-
29
-
-
51049124292
-
Convergence of the variational iteration method for solving linear systems of ODEs with constant coefficients
-
Davod Khojasteh Salkuyeh Convergence of the variational iteration method for solving linear systems of ODEs with constant coefficients Comput. Math. Appl. 56 2008 2027 2033
-
(2008)
Comput. Math. Appl.
, vol.56
, pp. 2027-2033
-
-
Salkuyeh, D.K.1
-
30
-
-
33748293091
-
Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives
-
G.E. Draganescu Application of a variational iteration method to linear and nonlinear viscoelastic models with fractional derivatives J. Math. Phys. 47 8 2006 082902
-
(2006)
J. Math. Phys.
, vol.47
, Issue.8
, pp. 082902
-
-
Draganescu, G.E.1
-
31
-
-
30344464250
-
Application of variational iteration method to nonlinear differential equations of fractional order
-
Z. Odibat, and S. Momani Application of variational iteration method to nonlinear differential equations of fractional order Int. J. Nonlinear Sci. Numer. Simul. 1 7 2006 15 27
-
(2006)
Int. J. Nonlinear Sci. Numer. Simul.
, vol.1
, Issue.7
, pp. 15-27
-
-
Odibat, Z.1
Momani, S.2
-
32
-
-
33646878106
-
Analytic approach to linear fractional partial differential equations arising in fluid mechanics
-
S. Momani, and Z. Odibat Analytic approach to linear fractional partial differential equations arising in fluid mechanics Phys. Lett. A 355 2006 271 279
-
(2006)
Phys. Lett. A
, vol.355
, pp. 271-279
-
-
Momani, S.1
Odibat, Z.2
-
33
-
-
24944474278
-
Application of He's variational iteration meathod to Helmhotz equation
-
S. Momani, and S. Abuasad Application of He's variational iteration meathod to Helmhotz equation Chaos Solitons Fractals 27 5 2006 1119 1123
-
(2006)
Chaos Solitons Fractals
, vol.27
, Issue.5
, pp. 1119-1123
-
-
Momani, S.1
Abuasad, S.2
-
34
-
-
33748425302
-
Numerical comparison of methods for solving linear differential equations of fractional order
-
S. Momani, and Z. Odibat Numerical comparison of methods for solving linear differential equations of fractional order Chaos Solitons Fractals 31 5 2007 1248 1255
-
(2007)
Chaos Solitons Fractals
, vol.31
, Issue.5
, pp. 1248-1255
-
-
Momani, S.1
Odibat, Z.2
-
35
-
-
34250661428
-
Numerical approach to differential equations of fractional order
-
S. Momani, and Z. Odibat Numerical approach to differential equations of fractional order J. Comput. Appl. Math. 207 2007 96 110
-
(2007)
J. Comput. Appl. Math.
, vol.207
, pp. 96-110
-
-
Momani, S.1
Odibat, Z.2
-
36
-
-
34548650141
-
Numerical solution of FokkerPlanck equation with space- and time-fractional derivatives
-
Z. Odibat, and S. Momani Numerical solution of FokkerPlanck equation with space- and time-fractional derivatives Phys. Lett. A 369 56 2007 349 358
-
(2007)
Phys. Lett. A
, vol.369
, Issue.56
, pp. 349-358
-
-
Odibat, Z.1
Momani, S.2
-
37
-
-
38049162125
-
Variational iteration method for solving the space- and time-fractional KdV equation
-
S. Momani, Z. Odibat, and A. Alawneh Variational iteration method for solving the space- and time-fractional KdV equation Numer. Methods Partial Differential Equations 24 1 2007 262 271
-
(2007)
Numer. Methods Partial Differential Equations
, vol.24
, Issue.1
, pp. 262-271
-
-
Momani, S.1
Odibat, Z.2
Alawneh, A.3
-
38
-
-
60549112414
-
Variational iteration method for fractional heat- and wave-like equations
-
R. Yulita Molliq, M.S.M. Noorani, and I. Hashim Variational iteration method for fractional heat- and wave-like equations Nonlinear Anal. RWA 10 2009 1854 1869
-
(2009)
Nonlinear Anal. RWA
, vol.10
, pp. 1854-1869
-
-
Yulita Molliq, R.1
Noorani, M.S.M.2
Hashim, I.3
-
39
-
-
31444443560
-
A numeric simulation an explicit solutions of KdVBurgers' and Lax's seventh-order KdV equations
-
A.A. Soliman A numeric simulation an explicit solutions of KdVBurgers' and Lax's seventh-order KdV equations Chaos Solitons Fractals 29 2 2006 294 302
-
(2006)
Chaos Solitons Fractals
, vol.29
, Issue.2
, pp. 294-302
-
-
Soliman, A.A.1
|