메뉴 건너뛰기




Volumn 518, Issue 1, 2013, Pages 209-214

DiffCorr: An R package to analyze and visualize differential correlations in biological networks

Author keywords

Correlation network; Differential correlation; Network modules; R program

Indexed keywords

TRANSCRIPTOME;

EID: 84875380606     PISSN: 03781119     EISSN: 18790038     Source Type: Journal    
DOI: 10.1016/j.gene.2012.11.028     Document Type: Article
Times cited : (141)

References (44)
  • 1
    • 79960556206 scopus 로고    scopus 로고
    • Differential C3NET reveals disease networks of direct physical interactions
    • Altay G., Asim M., Markowetz F., Neal D.E. Differential C3NET reveals disease networks of direct physical interactions. BMC Bioinforma. 2011, 12:296.
    • (2011) BMC Bioinforma. , vol.12 , pp. 296
    • Altay, G.1    Asim, M.2    Markowetz, F.3    Neal, D.E.4
  • 2
    • 0001677717 scopus 로고
    • Controlling the false discovery rate: a practical and powerful approach to multiple testing
    • Benjamini Y., Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. Roy. Stat. Soc. B. 1995, 57:289-300.
    • (1995) J. Roy. Stat. Soc. B. , vol.57 , pp. 289-300
    • Benjamini, Y.1    Hochberg, Y.2
  • 3
    • 65549155929 scopus 로고    scopus 로고
    • Identifying set-wise differential co-expression in gene expression microarray data
    • Cho S.B., Kim J., Kim J.H. Identifying set-wise differential co-expression in gene expression microarray data. BMC Bioinforma. 2009, 10:109.
    • (2009) BMC Bioinforma. , vol.10 , pp. 109
    • Cho, S.B.1    Kim, J.2    Kim, J.H.3
  • 4
    • 28944444652 scopus 로고    scopus 로고
    • Differential coexpression analysis using microarray data and its application to human cancer
    • Choi J.K., Yu U., Yoo O.J., Kim S. Differential coexpression analysis using microarray data and its application to human cancer. Bioinformatics 2005, 21:4348-4355.
    • (2005) Bioinformatics , vol.21 , pp. 4348-4355
    • Choi, J.K.1    Yu, U.2    Yoo, O.J.3    Kim, S.4
  • 5
    • 79957650605 scopus 로고    scopus 로고
    • Quantifying differential gene connectivity between disease states for objective identification of disease-relevant genes
    • Chu J.H., Lazarus R., Carey V.J., Raby B.A. Quantifying differential gene connectivity between disease states for objective identification of disease-relevant genes. BMC Syst. Biol. 2011, 5:89.
    • (2011) BMC Syst. Biol. , vol.5 , pp. 89
    • Chu, J.H.1    Lazarus, R.2    Carey, V.J.3    Raby, B.A.4
  • 6
    • 43349094507 scopus 로고    scopus 로고
    • The igraph software package for complex network research
    • (p.
    • Csardi G., Nepusz T. The igraph software package for complex network research. Int. J. Complex Syst. 2006, (p. http://necsi.org/events/iccs6/viewabstract.php?id=88).
    • (2006) Int. J. Complex Syst.
    • Csardi, G.1    Nepusz, T.2
  • 7
    • 84862889045 scopus 로고    scopus 로고
    • An empirical Bayesian approach for identifying differential coexpression in high-throughput experiments
    • Dawson J.A., Kendziorski C. An empirical Bayesian approach for identifying differential coexpression in high-throughput experiments. Biometrics 2012, 68:455-465.
    • (2012) Biometrics , vol.68 , pp. 455-465
    • Dawson, J.A.1    Kendziorski, C.2
  • 8
    • 84864152519 scopus 로고    scopus 로고
    • R/EBcoexpress: an empirical Bayesian framework for discovering differential co-expression
    • Dawson J.A., Ye S., Kendziorski C. R/EBcoexpress: an empirical Bayesian framework for discovering differential co-expression. Bioinformatics 2012, 28:1939-1940.
    • (2012) Bioinformatics , vol.28 , pp. 1939-1940
    • Dawson, J.A.1    Ye, S.2    Kendziorski, C.3
  • 9
    • 77953913791 scopus 로고    scopus 로고
    • From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in diseases
    • de la Fuente A. From 'differential expression' to 'differential networking' - identification of dysfunctional regulatory networks in diseases. Trends Genet. 2010, 26:326-333.
    • (2010) Trends Genet. , vol.26 , pp. 326-333
    • de la Fuente, A.1
  • 11
    • 33846689706 scopus 로고    scopus 로고
    • Using GOstats to test gene lists for GO term association
    • Falcon S., Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23:257-258.
    • (2007) Bioinformatics , vol.23 , pp. 257-258
    • Falcon, S.1    Gentleman, R.2
  • 13
    • 78650676139 scopus 로고    scopus 로고
    • Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach
    • Fukushima A., Kusano M., Redestig H., Arita M., Saito K. Metabolomic correlation-network modules in Arabidopsis based on a graph-clustering approach. BMC Syst. Biol. 2011, 5:1.
    • (2011) BMC Syst. Biol. , vol.5 , pp. 1
    • Fukushima, A.1    Kusano, M.2    Redestig, H.3    Arita, M.4    Saito, K.5
  • 14
    • 84859336922 scopus 로고    scopus 로고
    • Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches
    • Fukushima A., et al. Exploring tomato gene functions based on coexpression modules using graph clustering and differential coexpression approaches. Plant Physiol. 2012, 158:1487-1502.
    • (2012) Plant Physiol. , vol.158 , pp. 1487-1502
    • Fukushima, A.1
  • 15
    • 70449358722 scopus 로고    scopus 로고
    • A methodology for the analysis of differential coexpression across the human lifespan
    • Gillis J., Pavlidis P. A methodology for the analysis of differential coexpression across the human lifespan. BMC Bioinforma. 2009, 10:306.
    • (2009) BMC Bioinforma. , vol.10 , pp. 306
    • Gillis, J.1    Pavlidis, P.2
  • 16
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub T.R., et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286:531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 19
    • 77950621240 scopus 로고    scopus 로고
    • Data integration and analysis of biological networks
    • Kim T.Y., Kim H.U., Lee S.Y. Data integration and analysis of biological networks. Curr. Opin. Biotechnol. 2010, 21:78-84.
    • (2010) Curr. Opin. Biotechnol. , vol.21 , pp. 78-84
    • Kim, T.Y.1    Kim, H.U.2    Lee, S.Y.3
  • 20
    • 21044446187 scopus 로고    scopus 로고
    • Finding disease specific alterations in the co-expression of genes
    • Kostka D., Spang R. Finding disease specific alterations in the co-expression of genes. Bioinformatics 2004, 20(Suppl. 1):i194-i199.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1
    • Kostka, D.1    Spang, R.2
  • 21
    • 37849016716 scopus 로고    scopus 로고
    • Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana
    • Kusano M., et al. Unbiased characterization of genotype-dependent metabolic regulations by metabolomic approach in Arabidopsis thaliana. BMC Syst. Biol. 2007, 1:53.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 53
    • Kusano, M.1
  • 22
    • 79960214215 scopus 로고    scopus 로고
    • Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light
    • Kusano M., et al. Metabolomics reveals comprehensive reprogramming involving two independent metabolic responses of Arabidopsis to UV-B light. Plant J. 2011, 67:354-369.
    • (2011) Plant J. , vol.67 , pp. 354-369
    • Kusano, M.1
  • 23
    • 10244219943 scopus 로고    scopus 로고
    • A statistical method for identifying differential gene-gene co-expression patterns
    • Lai Y., Wu B., Chen L., Zhao H. A statistical method for identifying differential gene-gene co-expression patterns. Bioinformatics 2004, 20:3146-3155.
    • (2004) Bioinformatics , vol.20 , pp. 3146-3155
    • Lai, Y.1    Wu, B.2    Chen, L.3    Zhao, H.4
  • 24
    • 41449085571 scopus 로고    scopus 로고
    • Eigengene networks for studying the relationships between co-expression modules
    • Langfelder P., Horvath S. Eigengene networks for studying the relationships between co-expression modules. BMC Syst. Biol. 2007, 1:54.
    • (2007) BMC Syst. Biol. , vol.1 , pp. 54
    • Langfelder, P.1    Horvath, S.2
  • 25
    • 0037168518 scopus 로고    scopus 로고
    • Genome-wide coexpression dynamics: theory and application
    • Li K.C. Genome-wide coexpression dynamics: theory and application. Proc. Natl. Acad. Sci. U. S. A. 2002, 99:16875-16880.
    • (2002) Proc. Natl. Acad. Sci. U. S. A. , vol.99 , pp. 16875-16880
    • Li, K.C.1
  • 26
    • 77957813589 scopus 로고    scopus 로고
    • DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data
    • Liu B.H., Yu H., Tu K., Li C., Li Y.X., Li Y.Y. DCGL: an R package for identifying differentially coexpressed genes and links from gene expression microarray data. Bioinformatics 2010, 26:2637-2638.
    • (2010) Bioinformatics , vol.26 , pp. 2637-2638
    • Liu, B.H.1    Yu, H.2    Tu, K.3    Li, C.4    Li, Y.X.5    Li, Y.Y.6
  • 27
    • 38449088751 scopus 로고    scopus 로고
    • Inferring cellular networks-a review
    • Markowetz F., Spang R. Inferring cellular networks-a review. BMC Bioinforma. 2007, 8(Suppl. 6):S5.
    • (2007) BMC Bioinforma. , vol.8 , Issue.SUPPL. 6
    • Markowetz, F.1    Spang, R.2
  • 28
    • 32044454046 scopus 로고    scopus 로고
    • Metabolomic networks in plants: transitions from pattern recognition to biological interpretation
    • Morgenthal K., Weckwerth W., Steuer R. Metabolomic networks in plants: transitions from pattern recognition to biological interpretation. Biosystems 2006, 83:108-117.
    • (2006) Biosystems , vol.83 , pp. 108-117
    • Morgenthal, K.1    Weckwerth, W.2    Steuer, R.3
  • 29
    • 84856882105 scopus 로고    scopus 로고
    • Ranking differential hubs in gene co-expression networks
    • Odibat O., Reddy C. Ranking differential hubs in gene co-expression networks. J. Bioinformatics Comput. Biol. 2012, 10:1240002.
    • (2012) J. Bioinformatics Comput. Biol. , vol.10 , pp. 1240002
    • Odibat, O.1    Reddy, C.2
  • 30
    • 0035999977 scopus 로고    scopus 로고
    • A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments
    • Pan W. A comparative review of statistical methods for discovering differentially expressed genes in replicated microarray experiments. Bioinformatics 2002, 18:546-554.
    • (2002) Bioinformatics , vol.18 , pp. 546-554
    • Pan, W.1
  • 31
    • 77957296042 scopus 로고    scopus 로고
    • Analysis of Alzheimer's disease severity across brain regions by topological analysis of gene co-expression networks
    • Ray M., Zhang W. Analysis of Alzheimer's disease severity across brain regions by topological analysis of gene co-expression networks. BMC Syst. Biol. 2010, 4:136.
    • (2010) BMC Syst. Biol. , vol.4 , pp. 136
    • Ray, M.1    Zhang, W.2
  • 32
    • 0037433040 scopus 로고    scopus 로고
    • Identifying differentially expressed genes using false discovery rate controlling procedures
    • Reiner A., Yekutieli D., Benjamini Y. Identifying differentially expressed genes using false discovery rate controlling procedures. Bioinformatics 2003, 19:368-375.
    • (2003) Bioinformatics , vol.19 , pp. 368-375
    • Reiner, A.1    Yekutieli, D.2    Benjamini, Y.3
  • 33
    • 37849020436 scopus 로고    scopus 로고
    • Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'
    • Saito K., Hirai M.Y., Yonekura-Sakakibara K. Decoding genes with coexpression networks and metabolomics - 'majority report by precogs'. Trends Plant Sci. 2008, 13:36-43.
    • (2008) Trends Plant Sci. , vol.13 , pp. 36-43
    • Saito, K.1    Hirai, M.Y.2    Yonekura-Sakakibara, K.3
  • 34
    • 34249847958 scopus 로고    scopus 로고
    • PcaMethods-a bioconductor package providing PCA methods for incomplete data
    • Stacklies W., Redestig H., Scholz M., Walther D., Selbig J. pcaMethods-a bioconductor package providing PCA methods for incomplete data. Bioinformatics 2007, 23:1164-1167.
    • (2007) Bioinformatics , vol.23 , pp. 1164-1167
    • Stacklies, W.1    Redestig, H.2    Scholz, M.3    Walther, D.4    Selbig, J.5
  • 35
    • 33748475897 scopus 로고    scopus 로고
    • Review: on the analysis and interpretation of correlations in metabolomic data
    • Steuer R. Review: on the analysis and interpretation of correlations in metabolomic data. Brief. Bioinform. 2006, 7:151-158.
    • (2006) Brief. Bioinform. , vol.7 , pp. 151-158
    • Steuer, R.1
  • 36
    • 45449097447 scopus 로고    scopus 로고
    • Fdrtool: a versatile R package for estimating local and tail area-based false discovery rates
    • Strimmer K. fdrtool: a versatile R package for estimating local and tail area-based false discovery rates. Bioinformatics 2008, 24:1461-1462.
    • (2008) Bioinformatics , vol.24 , pp. 1461-1462
    • Strimmer, K.1
  • 37
    • 77957319820 scopus 로고    scopus 로고
    • DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules
    • Tesson B.M., Breitling R., Jansen R.C. DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules. BMC Bioinforma. 2010, 11:497.
    • (2010) BMC Bioinforma. , vol.11 , pp. 497
    • Tesson, B.M.1    Breitling, R.2    Jansen, R.C.3
  • 38
    • 70449115789 scopus 로고    scopus 로고
    • Co-expression tools for plant biology: opportunities for hypothesis generation and caveats
    • Usadel B., et al. Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ. 2009, 32:1633-1651.
    • (2009) Plant Cell Environ. , vol.32 , pp. 1633-1651
    • Usadel, B.1
  • 39
    • 80053202843 scopus 로고    scopus 로고
    • A differential network approach to exploring differences between biological states: an application to prediabetes
    • Valcarcel B., et al. A differential network approach to exploring differences between biological states: an application to prediabetes. PLoS One 2011, 6:e24702.
    • (2011) PLoS One , vol.6
    • Valcarcel, B.1
  • 40
    • 33747019547 scopus 로고    scopus 로고
    • Centering, scaling, and transformations: improving the biological information content of metabolomics data
    • van den Berg R.A., Hoefsloot H.C., Westerhuis J.A., Smilde A.K., van der Werf M.J. Centering, scaling, and transformations: improving the biological information content of metabolomics data. BMC Genomics 2006, 7:142.
    • (2006) BMC Genomics , vol.7 , pp. 142
    • Van Den Berg, R.A.1    Hoefsloot, H.C.2    Westerhuis, J.A.3    Smilde, A.K.4    van der Werf, M.J.5
  • 41
    • 78649679994 scopus 로고    scopus 로고
    • Recent advances in clustering methods for protein interaction networks
    • Wang J., Li M., Deng Y., Pan Y. Recent advances in clustering methods for protein interaction networks. BMC Genomics 2010, 11(Suppl. 3):S10.
    • (2010) BMC Genomics , vol.11 , Issue.SUPPL. 3
    • Wang, J.1    Li, M.2    Deng, Y.3    Pan, Y.4
  • 42
    • 34547649056 scopus 로고    scopus 로고
    • CoXpress: differential co-expression in gene expression data
    • Watson M. CoXpress: differential co-expression in gene expression data. BMC Bioinforma. 2006, 7:509.
    • (2006) BMC Bioinforma. , vol.7 , pp. 509
    • Watson, M.1
  • 43
    • 67349198476 scopus 로고    scopus 로고
    • IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis
    • White C.D., Brown M.D., Sacks D.B. IQGAPs in cancer: a family of scaffold proteins underlying tumorigenesis. FEBS Lett. 2009, 583:1817-1824.
    • (2009) FEBS Lett. , vol.583 , pp. 1817-1824
    • White, C.D.1    Brown, M.D.2    Sacks, D.B.3
  • 44
    • 79960892858 scopus 로고    scopus 로고
    • Link-based quantitative methods to identify differentially coexpressed genes and gene pairs
    • Yu H., Liu B.H., Ye Z.Q., Li C., Li Y.X., Li Y.Y. Link-based quantitative methods to identify differentially coexpressed genes and gene pairs. BMC Bioinforma. 2011, 12:315.
    • (2011) BMC Bioinforma. , vol.12 , pp. 315
    • Yu, H.1    Liu, B.H.2    Ye, Z.Q.3    Li, C.4    Li, Y.X.5    Li, Y.Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.