메뉴 건너뛰기




Volumn 24, Issue 2, 2010, Pages 116-125

Monthly river flow forecasting by an adaptive neuro-fuzzy inference system

Author keywords

ANFIS; Fuzzy logic; G ksu River; Monthly river flow; River flow forecasting.

Indexed keywords

ADAPTIVE NEURO-FUZZY INFERENCE SYSTEM; ANFIS; ANFIS METHOD; ANFIS MODEL; AUTOREGRESSIVE METHODS; BEST-FIT MODELS; FORECASTING MODELS; MONTHLY RIVER FLOW; RIVER FLOW; RIVER FLOW FORECASTING; TIME PERIODS; TRAINING AND TESTING; VALIDATION DATA;

EID: 77953949991     PISSN: 17476585     EISSN: 17476593     Source Type: Journal    
DOI: 10.1111/j.1747-6593.2008.00162.x     Document Type: Article
Times cited : (23)

References (31)
  • 1
    • 33751420754 scopus 로고    scopus 로고
    • Multi-Year Drought Frequency Analysis at Multiple Sites by Operational Hydrology - A Comparison of Methods
    • Arena C, Cannarozzo M, Mazzola MR. Multi-Year Drought Frequency Analysis at Multiple Sites by Operational Hydrology - A Comparison of Methods. Phys. Chem. Earth 2006, 31:1146-1163.
    • (2006) Phys. Chem. Earth , vol.31 , pp. 1146-1163
    • Arena, C.1    Cannarozzo, M.2    Mazzola, M.R.3
  • 2
    • 0034174396 scopus 로고    scopus 로고
    • Artificial Neural Networks in Hydrology-II: Hydrologic Applications
    • ASCE Task Committee.
    • Artificial Neural Networks in Hydrology-II: Hydrologic Applications. J. Hydrol. Eng. ASCE 2000, 5((2)):124-137. ASCE Task Committee.
    • (2000) J. Hydrol. Eng. ASCE , vol.5 , Issue.2 , pp. 124-137
  • 4
    • 0141849042 scopus 로고    scopus 로고
    • The Box-Jenkins Analysis and Neural Networks: Prediction and Time Series Modeling
    • BuHamra S, Smaoui N, Gabr M. The Box-Jenkins Analysis and Neural Networks: Prediction and Time Series Modeling. Appl. Math. Model. 2003, 27:805-815.
    • (2003) Appl. Math. Model. , vol.27 , pp. 805-815
    • BuHamra, S.1    Smaoui, N.2    Gabr, M.3
  • 5
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive Neuro-Fuzzy Inference System for Prediction of Water Level in Reservoir
    • Chang FJ, Chang YT. Adaptive Neuro-Fuzzy Inference System for Prediction of Water Level in Reservoir. Adv. Water Resour. 2006, 29:1-10.
    • (2006) Adv. Water Resour. , vol.29 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 6
    • 0035864789 scopus 로고    scopus 로고
    • Counter Propagation Fuzzy-Neural Network for River Flow Reconstruction
    • Chang FJ, Hu HF, Chen YC. Counter Propagation Fuzzy-Neural Network for River Flow Reconstruction. Hydrol. Process. 2001, 15:219-232.
    • (2001) Hydrol. Process. , vol.15 , pp. 219-232
    • Chang, F.J.1    Hu, H.F.2    Chen, Y.C.3
  • 7
    • 0036719845 scopus 로고    scopus 로고
    • Real-Time Recurrent Learning Neural Network for Stream-Flow Forecasting
    • Chang FJ, Chang LC, Huang HL. Real-Time Recurrent Learning Neural Network for Stream-Flow Forecasting. Hydrol. Process. 2002, 16:2577-2588.
    • (2002) Hydrol. Process. , vol.16 , pp. 2577-2588
    • Chang, F.J.1    Chang, L.C.2    Huang, H.L.3
  • 8
    • 33646075449 scopus 로고    scopus 로고
    • The Strategy of Building a Flood Forecast Model by Neuro-Fuzzy Network
    • Chen SH, Lin YH, Chang LC, Chang FJ. The Strategy of Building a Flood Forecast Model by Neuro-Fuzzy Network. Hydrol. Process. 2006, 20:1525-1540.
    • (2006) Hydrol. Process. , vol.20 , pp. 1525-1540
    • Chen, S.H.1    Lin, Y.H.2    Chang, L.C.3    Chang, F.J.4
  • 9
    • 0036698154 scopus 로고    scopus 로고
    • Evaluation of Artificial Neural Network Techniques for Flow Forecasting in the River Yangtze, China
    • Dawson CW, Harpham C, Wilby RL, Chen Y. Evaluation of Artificial Neural Network Techniques for Flow Forecasting in the River Yangtze, China. Hydrol. Earth Sys. Sci. 2002, 64:619-626.
    • (2002) Hydrol. Earth Sys. Sci. , vol.64 , pp. 619-626
    • Dawson, C.W.1    Harpham, C.2    Wilby, R.L.3    Chen, Y.4
  • 10
    • 77953919839 scopus 로고    scopus 로고
    • Doctor of Philosophy Thesis, Pamukkale University, Turkey (in Turkish)
    • Firat M. 2007, Doctor of Philosophy Thesis, Pamukkale University, Turkey (in Turkish)
    • (2007)
    • Firat, M.1
  • 11
    • 3142663403 scopus 로고    scopus 로고
    • Estimation of the Suspended Concentration and Amount by Using Artificial Neural Networks
    • Fιrat M, Güngör M. Estimation of the Suspended Concentration and Amount by Using Artificial Neural Networks. IMO Tech. J. 2004, 15((3)):3267-3282.
    • (2004) IMO Tech. J. , vol.15 , Issue.3 , pp. 3267-3282
    • Frat, M.1    Güngör, M.2
  • 12
    • 34249943593 scopus 로고    scopus 로고
    • River Flow Estimation Using Adaptive Neuro-Fuzzy Inference System
    • Firat M, Güngör M. River Flow Estimation Using Adaptive Neuro-Fuzzy Inference System. Math. Comput. Simulation 2007, 75((3-4)):87-96.
    • (2007) Math. Comput. Simulation , vol.75 , Issue.3-4 , pp. 87-96
    • Firat, M.1    Güngör, M.2
  • 13
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid Neural Network Models for Hydrologic Time Series Forecasting
    • Jain A, Kumar AM. Hybrid Neural Network Models for Hydrologic Time Series Forecasting. Appl. Soft Comput. 2007, 7:585-592.
    • (2007) Appl. Soft Comput. , vol.7 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 15
    • 33751412796 scopus 로고    scopus 로고
    • Comparison of Forecasting Performance of Nonlinear Models of Hydrological Time Series
    • Komornik J, Komornikova M, Mesiar R, Szökeova D, Szolgay J. Comparison of Forecasting Performance of Nonlinear Models of Hydrological Time Series. Phys. Chem. Earth 2006, 31:1127-1145.
    • (2006) Phys. Chem. Earth , vol.31 , pp. 1127-1145
    • Komornik, J.1    Komornikova, M.2    Mesiar, R.3    Szökeova, D.4    Szolgay, J.5
  • 16
    • 0034723860 scopus 로고    scopus 로고
    • Advance Flood Forecasting for Flood Stricken Bangladesh with a Fuzzy Reasoning Method
    • Liong SY, Lim WH, Kojiri T, Hori T. Advance Flood Forecasting for Flood Stricken Bangladesh with a Fuzzy Reasoning Method. Hydrol. Process. 2000, 14:431-448.
    • (2000) Hydrol. Process. , vol.14 , pp. 431-448
    • Liong, S.Y.1    Lim, W.H.2    Kojiri, T.3    Hori, T.4
  • 17
    • 33750442194 scopus 로고    scopus 로고
    • Parameter Estimation of an ARMA Model for River Flow Forecasting Using Goal Programming
    • Mohammadi K, Eslami HR, Kahawita R. Parameter Estimation of an ARMA Model for River Flow Forecasting Using Goal Programming. J. Hydrol. 2006, 331:293-299.
    • (2006) J. Hydrol. , vol.331 , pp. 293-299
    • Mohammadi, K.1    Eslami, H.R.2    Kahawita, R.3
  • 18
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of Sediment Load Concentration in Rivers Using Artificial Neural Network Model
    • Nagy HM, Watanabe K, Hirano M. Prediction of Sediment Load Concentration in Rivers Using Artificial Neural Network Model. J. Hydraul. Eng. 2002, 128:588-595.
    • (2002) J. Hydraul. Eng. , vol.128 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 19
    • 1942490118 scopus 로고    scopus 로고
    • A Neuro Fuzzy Computing Technique for Modeling Hydrological Time Series
    • Nayak PC, Sudheer KP, Rangan DM, Ramasastri KS. A Neuro Fuzzy Computing Technique for Modeling Hydrological Time Series. J. Hydrol. 2004, 291:52-66.
    • (2004) J. Hydrol. , vol.291 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 20
    • 14844352523 scopus 로고    scopus 로고
    • Fuzzy Computing Based Rainfall-Runoff Model for Real Time Flood Forecasting
    • Nayak PC, Sudheer KP, Ramasastri KS. Fuzzy Computing Based Rainfall-Runoff Model for Real Time Flood Forecasting. Hydrol. Process. 2005, 19:955-968.
    • (2005) Hydrol. Process. , vol.19 , pp. 955-968
    • Nayak, P.C.1    Sudheer, K.P.2    Ramasastri, K.S.3
  • 21
    • 33747178177 scopus 로고    scopus 로고
    • Artificial Neural Networks Used for the Prediction of the Cetane Number of Biodiesel
    • Ramadhas AS, Jayaraja S, Muraleedharan C, Padmakumar K. Artificial Neural Networks Used for the Prediction of the Cetane Number of Biodiesel. Renew. Energ. 2006, 31:2524-2533.
    • (2006) Renew. Energ. , vol.31 , pp. 2524-2533
    • Ramadhas, A.S.1    Jayaraja, S.2    Muraleedharan, C.3    Padmakumar, K.4
  • 22
    • 0033535432 scopus 로고    scopus 로고
    • A Non-Linear Rainfall-Runoff Model Using an Artificial Neural Network
    • Sajikumar N, Thandaveswara BS. A Non-Linear Rainfall-Runoff Model Using an Artificial Neural Network. J. Hydrol. 1999, 216:32-55.
    • (1999) J. Hydrol. , vol.216 , pp. 32-55
    • Sajikumar, N.1    Thandaveswara, B.S.2
  • 23
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the Internal Behaviour of Artificial Neural Network River Flow Models
    • Sudheer KP, Jain A. Explaining the Internal Behaviour of Artificial Neural Network River Flow Models. Hydrol. Process. 2004, 18:833-844.
    • (2004) Hydrol. Process. , vol.18 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 24
    • 0034298851 scopus 로고    scopus 로고
    • Application of Tank, NAM, ARMA and Neural Network Models to Flood Forecasting
    • Tingsanchali T, Guatam MR. Application of Tank, NAM, ARMA and Neural Network Models to Flood Forecasting. Hydrol. Process. 2000, 14:2473-2487.
    • (2000) Hydrol. Process. , vol.14 , pp. 2473-2487
    • Tingsanchali, T.1    Guatam, M.R.2
  • 25
    • 0001855442 scopus 로고
    • Mathematical Synthesis of Streamflow Sequences for the Analysis of River Basin by Simulation
    • Mass A. (ed), Harvard University Press, Cambridge, MA
    • Thomas HA, Fiering MB. Mathematical Synthesis of Streamflow Sequences for the Analysis of River Basin by Simulation. Design of Water Resources Systems 1962, 459-493. Mass A, (ed), Harvard University Press, Cambridge, MA
    • (1962) Design of Water Resources Systems , pp. 459-493
    • Thomas, H.A.1    Fiering, M.B.2
  • 26
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of Short-Term Rainfall Prediction Models for Real-Time Flood Forecasting
    • Toth E, Brath A, Montanari A. Comparison of Short-Term Rainfall Prediction Models for Real-Time Flood Forecasting. J. Hydrol. 2000, 239:132-147.
    • (2000) J. Hydrol. , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 27
    • 34249941960 scopus 로고    scopus 로고
    • Bilge Kültür Sanat Publisher, Istanbul, ISBN: 9758509233, p
    • Şen Z. Fuzzy Logic and Foundation 2001, 172. Bilge Kültür Sanat Publisher, Istanbul, ISBN: 9758509233, p
    • (2001) Fuzzy Logic and Foundation , pp. 172
    • Şen, Z.1
  • 28
    • 33745101017 scopus 로고    scopus 로고
    • A Comparative Fuzzy Logic Approach to Runoff Coefficient and Runoff Estimation
    • Şen Z, Altunkaynak A. A Comparative Fuzzy Logic Approach to Runoff Coefficient and Runoff Estimation. Hydrol. Process. 2006, 20:1993-2009.
    • (2006) Hydrol. Process. , vol.20 , pp. 1993-2009
    • Şen, Z.1    Altunkaynak, A.2
  • 30
    • 34248666540 scopus 로고
    • Fuzzy Sets
    • Zadeh LA. Fuzzy Sets. Inf. Control 1965, 8((3)):338-353.
    • (1965) Inf. Control , vol.8 , Issue.3 , pp. 338-353
    • Zadeh, L.A.1
  • 31
    • 0037243071 scopus 로고    scopus 로고
    • Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model
    • Zhang GP. Time Series Forecasting Using a Hybrid ARIMA and Neural Network Model. Neurocomputing 2003, 50:159-175.
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.