메뉴 건너뛰기




Volumn 12, Issue 1, 2013, Pages 10-17

Genomic deletions and point mutations induced in Saccharomyces cerevisiae by the trinucleotide repeats (GAA·TTC) associated with Friedreich's ataxia

Author keywords

Friedreich's ataxia; GAA TTC triplet repeats; Genome instability; Mutations; Saccharomyces cerevisiae

Indexed keywords

DNA POLYMERASE;

EID: 84871713978     PISSN: 15687864     EISSN: 15687856     Source Type: Journal    
DOI: 10.1016/j.dnarep.2012.10.001     Document Type: Article
Times cited : (24)

References (43)
  • 2
    • 13344270899 scopus 로고    scopus 로고
    • Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion
    • Campuzano V., Montermini L., Molto M.D., Pianese L., Cossee M., et al. Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion. Science 1996, 271:1423-1427.
    • (1996) Science , vol.271 , pp. 1423-1427
    • Campuzano, V.1    Montermini, L.2    Molto, M.D.3    Pianese, L.4    Cossee, M.5
  • 4
    • 34250878426 scopus 로고    scopus 로고
    • Expandable DNA repeats and human disease
    • Mirkin S.M. Expandable DNA repeats and human disease. Nature 2007, 447:932-940.
    • (2007) Nature , vol.447 , pp. 932-940
    • Mirkin, S.M.1
  • 5
    • 77649144557 scopus 로고    scopus 로고
    • Repeat instability as the basis for human diseases and as a potential target for therapy
    • Lopez Castel A., Cleary J.D., Pearson C.E. Repeat instability as the basis for human diseases and as a potential target for therapy. Nat. Rev. Mol. Cell Biol. 2010, 11:165-170.
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 165-170
    • Lopez Castel, A.1    Cleary, J.D.2    Pearson, C.E.3
  • 6
    • 79952612712 scopus 로고    scopus 로고
    • Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast
    • Cherng N., Shishkin A.A., Schlager L.I., Tuck R.H., Sloan R., et al. Expansions, contractions, and fragility of the spinocerebellar ataxia type 10 pentanucleotide repeat in yeast. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:2843-2848.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 2843-2848
    • Cherng, N.1    Shishkin, A.A.2    Schlager, L.I.3    Tuck, R.H.4    Sloan, R.5
  • 7
    • 0242718930 scopus 로고    scopus 로고
    • Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair
    • Lenzmeier B.A., Freudenreich C.H. Trinucleotide repeat instability: a hairpin curve at the crossroads of replication, recombination, and repair. Cytogenet. Genome Res. 2003, 100:7-24.
    • (2003) Cytogenet. Genome Res. , vol.100 , pp. 7-24
    • Lenzmeier, B.A.1    Freudenreich, C.H.2
  • 8
    • 38049100631 scopus 로고    scopus 로고
    • Features of trinucleotide repeat instability in vivo
    • Kovtun I.V., McMurray C.T. Features of trinucleotide repeat instability in vivo. Cell Res. 2008, 18:198-213.
    • (2008) Cell Res. , vol.18 , pp. 198-213
    • Kovtun, I.V.1    McMurray, C.T.2
  • 9
    • 10244264815 scopus 로고    scopus 로고
    • Replication-mediated instability of the GAA triplet repeat mutation in Friedreich ataxia
    • Pollard L.M., Sharma R., Gomez M., Shah S., Delatycki M.B., et al. Replication-mediated instability of the GAA triplet repeat mutation in Friedreich ataxia. Nucleic Acids Res. 2004, 32:5962-5971.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 5962-5971
    • Pollard, L.M.1    Sharma, R.2    Gomez, M.3    Shah, S.4    Delatycki, M.B.5
  • 10
    • 1542344344 scopus 로고    scopus 로고
    • Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo
    • Krasilnikova M.M., Mirkin S.M. Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo. Mol. Cell. Biol. 2004, 24:2286-2295.
    • (2004) Mol. Cell. Biol. , vol.24 , pp. 2286-2295
    • Krasilnikova, M.M.1    Mirkin, S.M.2
  • 12
    • 1342325427 scopus 로고    scopus 로고
    • Structure-dependent recombination hot spot activity of GAA. TTC sequences from intron 1 of the Friedreich's ataxia gene
    • Napierala M., Dere R., Vetcher A., Wells R.D. Structure-dependent recombination hot spot activity of GAA. TTC sequences from intron 1 of the Friedreich's ataxia gene. J. Biol. Chem. 2004, 279:6444-6454.
    • (2004) J. Biol. Chem. , vol.279 , pp. 6444-6454
    • Napierala, M.1    Dere, R.2    Vetcher, A.3    Wells, R.D.4
  • 13
    • 55549095970 scopus 로고    scopus 로고
    • Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair
    • Kim H.M., Narayanan V., Mieczkowski P.A., Petes T.D., Krasilnikova M.M., et al. Chromosome fragility at GAA tracts in yeast depends on repeat orientation and requires mismatch repair. EMBO J. 2008, 27:2896-2906.
    • (2008) EMBO J. , vol.27 , pp. 2896-2906
    • Kim, H.M.1    Narayanan, V.2    Mieczkowski, P.A.3    Petes, T.D.4    Krasilnikova, M.M.5
  • 14
    • 4544288618 scopus 로고    scopus 로고
    • Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells
    • Wang G., Vasquez K.M. Naturally occurring H-DNA-forming sequences are mutagenic in mammalian cells. Proc. Natl. Acad. Sci. U.S.A. 2004, 101:13448-13453.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 13448-13453
    • Wang, G.1    Vasquez, K.M.2
  • 15
    • 33747654494 scopus 로고    scopus 로고
    • Non-B DNA conformations formed by long repeating tracts of myotonic dystrophy type 1, myotonic dystrophy type 2, and Friedreich's ataxia genes, not the sequences per se, promote mutagenesis in flanking regions
    • Wojciechowska M., Napierala M., Larson J.E., Wells R.D. Non-B DNA conformations formed by long repeating tracts of myotonic dystrophy type 1, myotonic dystrophy type 2, and Friedreich's ataxia genes, not the sequences per se, promote mutagenesis in flanking regions. J. Biol. Chem. 2006, 281:24531-24543.
    • (2006) J. Biol. Chem. , vol.281 , pp. 24531-24543
    • Wojciechowska, M.1    Napierala, M.2    Larson, J.E.3    Wells, R.D.4
  • 16
    • 0032739342 scopus 로고    scopus 로고
    • Somatic sequence variation at the Friedreich ataxia locus includes complete contraction of the expanded GAA triplet repeat, significant length variation in serially passaged lymphoblasts and enhanced mutagenesis in the flanking sequence
    • Bidichandani S.I., Purandare S.M., Taylor E.E., Gumin G., Machkhas H., et al. Somatic sequence variation at the Friedreich ataxia locus includes complete contraction of the expanded GAA triplet repeat, significant length variation in serially passaged lymphoblasts and enhanced mutagenesis in the flanking sequence. Hum. Mol. Genet. 1999, 8:2425-2436.
    • (1999) Hum. Mol. Genet. , vol.8 , pp. 2425-2436
    • Bidichandani, S.I.1    Purandare, S.M.2    Taylor, E.E.3    Gumin, G.4    Machkhas, H.5
  • 17
    • 0030059301 scopus 로고    scopus 로고
    • Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair
    • Wang G., Seidman M.M., Glazer P.M. Mutagenesis in mammalian cells induced by triple helix formation and transcription-coupled repair. Science 1996, 271:802-805.
    • (1996) Science , vol.271 , pp. 802-805
    • Wang, G.1    Seidman, M.M.2    Glazer, P.M.3
  • 18
    • 67649639511 scopus 로고    scopus 로고
    • Large-scale expansions of Friedreich's ataxia GAA repeats in yeast
    • Shishkin A.A., Voineagu I., Matera R., Cherng N., Chernet B.T., et al. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol. Cell 2009, 35:82-92.
    • (2009) Mol. Cell , vol.35 , pp. 82-92
    • Shishkin, A.A.1    Voineagu, I.2    Matera, R.3    Cherng, N.4    Chernet, B.T.5
  • 19
    • 24944477416 scopus 로고    scopus 로고
    • A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation
    • Ponder R.G., Fonville N.C., Rosenberg S.M. A switch from high-fidelity to error-prone DNA double-strand break repair underlies stress-induced mutation. Mol. Cell 2005, 19:791-804.
    • (2005) Mol. Cell , vol.19 , pp. 791-804
    • Ponder, R.G.1    Fonville, N.C.2    Rosenberg, S.M.3
  • 20
    • 0029024834 scopus 로고
    • DNA synthesis errors associated with double-strand-break repair
    • Strathern J.N., Shafer B.K., McGill C.B. DNA synthesis errors associated with double-strand-break repair. Genetics 1995, 140:965-972.
    • (1995) Genetics , vol.140 , pp. 965-972
    • Strathern, J.N.1    Shafer, B.K.2    McGill, C.B.3
  • 21
    • 57149094856 scopus 로고    scopus 로고
    • Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae
    • Yang Y., Sterling J., Storici F., Resnick M.A., Gordenin D.A. Hypermutability of damaged single-strand DNA formed at double-strand breaks and uncapped telomeres in yeast Saccharomyces cerevisiae. PLoS Genet. 2008, 4:e1000264.
    • (2008) PLoS Genet. , vol.4
    • Yang, Y.1    Sterling, J.2    Storici, F.3    Resnick, M.A.4    Gordenin, D.A.5
  • 22
    • 77954328102 scopus 로고    scopus 로고
    • Increased mutagenesis and unique mutation signature associated with mitotic gene conversion
    • Hicks W.M., Kim M., Haber J.E. Increased mutagenesis and unique mutation signature associated with mitotic gene conversion. Science 2010, 329:82-85.
    • (2010) Science , vol.329 , pp. 82-85
    • Hicks, W.M.1    Kim, M.2    Haber, J.E.3
  • 24
    • 0030700468 scopus 로고    scopus 로고
    • A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae
    • Holbeck S.L., Strathern J.N. A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics 1997, 147:1017-1024.
    • (1997) Genetics , vol.147 , pp. 1017-1024
    • Holbeck, S.L.1    Strathern, J.N.2
  • 25
    • 0036861699 scopus 로고    scopus 로고
    • The roles of REV3 and RAD57 in double-strand-break-repair-induced mutagenesis of Saccharomyces cerevisiae
    • Rattray A.J., Shafer B.K., McGill C.B., Strathern J.N. The roles of REV3 and RAD57 in double-strand-break-repair-induced mutagenesis of Saccharomyces cerevisiae. Genetics 2002, 162:1063-1077.
    • (2002) Genetics , vol.162 , pp. 1063-1077
    • Rattray, A.J.1    Shafer, B.K.2    McGill, C.B.3    Strathern, J.N.4
  • 26
    • 63449126356 scopus 로고    scopus 로고
    • A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae
    • Lee P.S., Greenwell P.W., Dominska M., Gawel M., Hamilton M., et al. A fine-structure map of spontaneous mitotic crossovers in the yeast Saccharomyces cerevisiae. PLoS Genet. 2009, 5:e1000410.
    • (2009) PLoS Genet. , vol.5
    • Lee, P.S.1    Greenwell, P.W.2    Dominska, M.3    Gawel, M.4    Hamilton, M.5
  • 27
    • 34547913442 scopus 로고    scopus 로고
    • Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789
    • Wei W., McCusker J.H., Hyman R.W., Jones T., Ning Y., et al. Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:12825-12830.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 12825-12830
    • Wei, W.1    McCusker, J.H.2    Hyman, R.W.3    Jones, T.4    Ning, Y.5
  • 29
    • 33748046487 scopus 로고    scopus 로고
    • Selection and analysis of spontaneous reciprocal mitotic cross-overs in Saccharomyces cerevisiae
    • Barbera M.A., Petes T.D. Selection and analysis of spontaneous reciprocal mitotic cross-overs in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:12819-12824.
    • (2006) Proc. Natl. Acad. Sci. U.S.A. , vol.103 , pp. 12819-12824
    • Barbera, M.A.1    Petes, T.D.2
  • 30
    • 45149117221 scopus 로고    scopus 로고
    • Role of proliferating cell nuclear antigen interactions in the mismatch repair-dependent processing of mitotic and meiotic recombination intermediates in yeast
    • Stone J.E., Ozbirn R.G., Petes T.D., Jinks-Robertson S. Role of proliferating cell nuclear antigen interactions in the mismatch repair-dependent processing of mitotic and meiotic recombination intermediates in yeast. Genetics 2008, 178:1221-1236.
    • (2008) Genetics , vol.178 , pp. 1221-1236
    • Stone, J.E.1    Ozbirn, R.G.2    Petes, T.D.3    Jinks-Robertson, S.4
  • 31
    • 77952231091 scopus 로고    scopus 로고
    • Mitotic gene converson events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events
    • Lee P.S., Petes T.D. Mitotic gene converson events induced in G1-synchronized yeast cells by gamma rays are similar to spontaneous conversion events. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:7383-7388.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 7383-7388
    • Lee, P.S.1    Petes, T.D.2
  • 32
    • 0021668558 scopus 로고
    • A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast; 5-fluoro-orotic acid resistance
    • Boeke J.D., Lacroute F., Fink G.R. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast; 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 1984, 197:345-346.
    • (1984) Mol. Gen. Genet. , vol.197 , pp. 345-346
    • Boeke, J.D.1    Lacroute, F.2    Fink, G.R.3
  • 33
    • 0001313535 scopus 로고
    • The distribution of the numbers of mutants in bacterial populations
    • Lea D.E., Coulson C.A. The distribution of the numbers of mutants in bacterial populations. J. Genet. 1949, 49:264-285.
    • (1949) J. Genet. , vol.49 , pp. 264-285
    • Lea, D.E.1    Coulson, C.A.2
  • 34
    • 40849138236 scopus 로고    scopus 로고
    • Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae
    • Lang G.I., Murray A.W. Estimating the per-base-pair mutation rate in the yeast Saccharomyces cerevisiae. Genetics 2008, 178:67-82.
    • (2008) Genetics , vol.178 , pp. 67-82
    • Lang, G.I.1    Murray, A.W.2
  • 37
    • 68249116573 scopus 로고    scopus 로고
    • DNA end resection: many nucleases make light work
    • Mimitou E.P., Symington L.S. DNA end resection: many nucleases make light work. DNA Repair 2009, 8:983-995.
    • (2009) DNA Repair , vol.8 , pp. 983-995
    • Mimitou, E.P.1    Symington, L.S.2
  • 38
    • 11244269445 scopus 로고    scopus 로고
    • The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle
    • Aylon Y., Liefshitz B., Kupiec M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 2004, 23:4868-4875.
    • (2004) EMBO J. , vol.23 , pp. 4868-4875
    • Aylon, Y.1    Liefshitz, B.2    Kupiec, M.3
  • 39
    • 7244220162 scopus 로고    scopus 로고
    • DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1
    • Ira G., Pellicioli A., Balijja A., Wang X., Fiorani S., et al. DNA end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 2004, 431:1011-1017.
    • (2004) Nature , vol.431 , pp. 1011-1017
    • Ira, G.1    Pellicioli, A.2    Balijja, A.3    Wang, X.4    Fiorani, S.5
  • 40
    • 0035105240 scopus 로고    scopus 로고
    • Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest
    • Pellicioli A., Lee S.E., Lucca C., Foiani M., Haber J.E. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol. Cell 2001, 7:293-300.
    • (2001) Mol. Cell , vol.7 , pp. 293-300
    • Pellicioli, A.1    Lee, S.E.2    Lucca, C.3    Foiani, M.4    Haber, J.E.5
  • 42
    • 46949098616 scopus 로고    scopus 로고
    • Break dosage, cell cycle stage and DNA replication influence DNA double strand break response
    • Zierhut C., Diffley J.F.X. Break dosage, cell cycle stage and DNA replication influence DNA double strand break response. EMBO J. 2008, 27:1875-1885.
    • (2008) EMBO J. , vol.27 , pp. 1875-1885
    • Zierhut, C.1    Diffley, J.F.X.2
  • 43
    • 33645008019 scopus 로고    scopus 로고
    • ATR homolog Mec1 controls association of DNA polymerase zeta-Rev1 complex with regions near a double-strand break
    • Hirano Y., Sugimoto K. ATR homolog Mec1 controls association of DNA polymerase zeta-Rev1 complex with regions near a double-strand break. Curr. Biol. 2006, 16:585-590.
    • (2006) Curr. Biol. , vol.16 , pp. 585-590
    • Hirano, Y.1    Sugimoto, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.