메뉴 건너뛰기




Volumn 13, Issue 2, 2009, Pages 207-228

Searching for interacting features in subset selection

Author keywords

And classification; Data structure; Feature interaction; Feature selection; Search

Indexed keywords


EID: 65449184542     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/IDA-2009-0364     Document Type: Article
Times cited : (90)

References (43)
  • 6
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24 (1996), 123-140.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 7
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Computer Systems and Science 55(1) (1997), 119-139.
    • (1997) Computer Systems and Science , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 10
    • 21744462998 scopus 로고    scopus 로고
    • On bias, variance, 0/1-loss, and the curse-of-dimensionality
    • J. Friedman, On bias, variance, 0/1-loss, and the curse-of-dimensionality, Data Mining and Knowledge Discovery 1 1) (1997).
    • (1997) Data Mining and Knowledge Discovery , vol.1 , pp. 1
    • Friedman, J.1
  • 15
    • 33645690579 scopus 로고    scopus 로고
    • Fast binary feature selection with conditional mutual information
    • F. Fleuret, Fast binary feature selection with conditional mutual information, J Mach Learn Res 5 (2004), 1531-1555.
    • (2004) J Mach Learn Res , vol.5 , pp. 1531-1555
    • Fleuret, F.1
  • 16
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • A.L. Blum and P. Langley, Selection of relevant features and examples in machine learning, Artificial Intelligence 97 (1997), 245-271.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.L.1    Langley, P.2
  • 17
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu, Toward integrating feature selection algorithms for classification and clustering, IEEE Transactions on Knowledge and Data Engineering 17 (2005), 491-502.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , pp. 491-502
    • Liu, H.1    Yu, L.2
  • 18
    • 0028496468 scopus 로고
    • Learning boolean concepts in the presence of many irrelevant features
    • H. Almuallim and T.G. Dietterich, Learning boolean concepts in the presence of many irrelevant features, Artificial Intelligence 69(1-2) (1994), 279-305.
    • (1994) Artificial Intelligence , vol.69 , Issue.1-2 , pp. 279-305
    • Almuallim, H.1    Dietterich, T.G.2
  • 23
    • 65449121573 scopus 로고    scopus 로고
    • Computational Methods of Feature Selection, Chapman and Hall/CRC Press, ch
    • C.A. Isabelle Guyon and A. Elisseeff, Computational Methods of Feature Selection, Chapman and Hall/CRC Press, ch. Causal Feature Selection, 2008, 63-85.
    • (2008) Causal Feature Selection , pp. 63-85
    • Isabelle Guyon, C.A.1    Elisseeff, A.2
  • 24
    • 65449137664 scopus 로고    scopus 로고
    • S. Thrun et al., The monk's problems: A performance comparison of different learning algorithms, Carnegie Mellon University, Tech Rep CMU-CS-91-197, 1991.
    • S. Thrun et al., The monk's problems: A performance comparison of different learning algorithms, Carnegie Mellon University, Tech Rep CMU-CS-91-197, 1991.
  • 27
    • 0008155075 scopus 로고    scopus 로고
    • Searching for dependencies in bayesian classifiers
    • Springer-Verlag
    • M. Pazzani, Searching for dependencies in bayesian classifiers, in: Learning from Data: AI and Statistics V, Springer-Verlag, 1996.
    • (1996) Learning from Data: AI and Statistics V
    • Pazzani, M.1
  • 28
    • 9444258137 scopus 로고    scopus 로고
    • A. Jakulin and I. Bratko, Analyzing attribute dependencies, in: Proc of Principles of Knowledge Discovery in Data (PKDD), (2838) ser. LNAI, N. Lavrač, D. Gamberger, H. Blockeel and L. Todorovski, eds, Springer-Verlag, [Online], Available: Citeseer.ist.psu.edu/ jakulin03analyzing.html, September 2003, pp. 229-240.
    • A. Jakulin and I. Bratko, Analyzing attribute dependencies, in: Proc of Principles of Knowledge Discovery in Data (PKDD), (Vol. 2838) ser. LNAI, N. Lavrač, D. Gamberger, H. Blockeel and L. Todorovski, eds, Springer-Verlag, [Online], Available: Citeseer.ist.psu.edu/ jakulin03analyzing.html, September 2003, pp. 229-240.
  • 33
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extension of RELIEF
    • F. Bergadano and L. De Raedt, eds, Catania, Italy: Berlin: Springer-Verlag, April 6-8
    • I. Kononenko, Estimating attributes: Analysis and extension of RELIEF, in: Proceedings of the European Conference on Machine Learning, F. Bergadano and L. De Raedt, eds, Catania, Italy: Berlin: Springer-Verlag, April 6-8 1994, pp. 171-182.
    • (1994) Proceedings of the European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 36
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of Relief and ReliefF
    • M. Robnik-Sikonja and I. Kononenko, Theoretical and empirical analysis of Relief and ReliefF, Machine Learning 53 (2003), 23-69.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Robnik-Sikonja, M.1    Kononenko, I.2
  • 37
    • 79954993774 scopus 로고    scopus 로고
    • H. Liu, H. Motoda and M. Dash, A monotonic measure for optmial feature selection, in: Machine Learning: ECML-98, C. Nedellec and C. Rouveirol, eds, Chemnitz, Germany: Berlin Heidelberg: Springer-Verlag, April 21-23, 1998, pp. 101-106.
    • H. Liu, H. Motoda and M. Dash, A monotonic measure for optmial feature selection, in: Machine Learning: ECML-98, C. Nedellec and C. Rouveirol, eds, Chemnitz, Germany: Berlin Heidelberg: Springer-Verlag, April 21-23, 1998, pp. 101-106.
  • 38
    • 0034324043 scopus 로고    scopus 로고
    • A formalism for relevance and its application in feature subset selection
    • D.A. Bell and H. Wang, A formalism for relevance and its application in feature subset selection, Machine Learning 41(2) (2000), 175-195.
    • (2000) Machine Learning , vol.41 , Issue.2 , pp. 175-195
    • Bell, D.A.1    Wang, H.2
  • 39
    • 0242302657 scopus 로고    scopus 로고
    • Consistency-based search in feature selection
    • M. Dash and H. Liu, Consistency-based search in feature selection, Artificial Intelligence 151(1-2) (2003), 155-176.
    • (2003) Artificial Intelligence , vol.151 , Issue.1-2 , pp. 155-176
    • Dash, M.1    Liu, H.2
  • 41
    • 0034598746 scopus 로고    scopus 로고
    • Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling
    • A. Alizadeh et al., Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling, Nature 403 (2000), 503-511.
    • (2000) Nature , vol.403 , pp. 503-511
    • Alizadeh, A.1
  • 43
    • 65449115815 scopus 로고    scopus 로고
    • J.T. Irina Rish and J.L. Hellerstein, An analysis of data characteristics that affect naive bayes performance, IBM T.J. Watson Research Center, Tech Rep, 2001.
    • J.T. Irina Rish and J.L. Hellerstein, An analysis of data characteristics that affect naive bayes performance, IBM T.J. Watson Research Center, Tech Rep, 2001.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.