메뉴 건너뛰기




Volumn 32, Issue 22, 2012, Pages 4718-4726

The minimal active human SVA retrotransposon requires only the 5′-Hexamer and Alu-like domains

Author keywords

[No Author keywords available]

Indexed keywords

MESSENGER RNA; ORF2 PROTEIN; RNA DIRECTED DNA POLYMERASE; UNCLASSIFIED DRUG;

EID: 84868693365     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.00860-12     Document Type: Article
Times cited : (25)

References (87)
  • 2
    • 81855178276 scopus 로고    scopus 로고
    • Somatic retrotransposition alters the genetic landscape of the human brain
    • Baillie JK, et al. 2011. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534 -537.
    • (2011) Nature , vol.479 , pp. 534-537
    • Baillie, J.K.1
  • 3
    • 74849095591 scopus 로고    scopus 로고
    • Novel family of human transposable elements formed due to fusion of the first exon of gene MAST2 with retrotransposon SVA
    • Bantysh OB, Buzdin AA. 2009. Novel family of human transposable elements formed due to fusion of the first exon of gene MAST2 with retrotransposon SVA. Biochemistry 74:1393-1399.
    • (2009) Biochemistry , vol.74 , pp. 1393-1399
    • Bantysh, O.B.1    Buzdin, A.A.2
  • 4
    • 77953880842 scopus 로고    scopus 로고
    • LINE-1 retrotransposition activity in human genomes
    • Beck CR, et al. 2010. LINE-1 retrotransposition activity in human genomes. Cell 141:1159 -1170.
    • (2010) Cell , vol.141 , pp. 1159-1170
    • Beck, C.R.1
  • 5
    • 40449139336 scopus 로고    scopus 로고
    • Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health
    • Belancio VP, Hedges DJ, Deininger P. 2008. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 18:343-358.
    • (2008) Genome Res , vol.18 , pp. 343-358
    • Belancio, V.P.1    Hedges, D.J.2    Deininger, P.3
  • 6
    • 8544229065 scopus 로고    scopus 로고
    • Natural genetic variation caused by transposable elements in humans
    • Bennett E, Coleman L, Tsui C, Pittard W, Devine S. 2004. Natural genetic variation caused by transposable elements in humans. Genetics 168:933-951.
    • (2004) Genetics , vol.168 , pp. 933-951
    • Bennett, E.1    Coleman, L.2    Tsui, C.3    Pittard, W.4    Devine, S.5
  • 7
    • 0031135862 scopus 로고    scopus 로고
    • LINEs and Alus-the polyA connection
    • Boeke JD. 1997. LINEs and Alus-the polyA connection. Nat. Genet. 16:6 -7.
    • (1997) Nat. Genet , vol.16 , pp. 6-7
    • Boeke, J.D.1
  • 8
    • 0037965788 scopus 로고    scopus 로고
    • Hot L1s account for the bulk of retrotransposition in the human population
    • Brouha B, et al. 2003. Hot L1s account for the bulk of retrotransposition in the human population. Proc. Natl. Acad. Sci. U. S. A. 100:5280 -5285.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 5280-5285
    • Brouha, B.1
  • 9
    • 0036417244 scopus 로고    scopus 로고
    • A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3= terminus of L1
    • Buzdin A, et al. 2002. A new family of chimeric retrotranscripts formed by a full copy of U6 small nuclear RNA fused to the 3= terminus of L1. Genomics 80:402- 406.
    • (2002) Genomics , vol.80 , pp. 402-406
    • Buzdin, A.1
  • 10
    • 84866405520 scopus 로고    scopus 로고
    • Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons
    • Carbone L, et al. 2012. Centromere remodeling in Hoolock leuconedys (Hylobatidae) by a new transposable element unique to the gibbons. Genome Biol. Evol. 4:648-658.
    • (2012) Genome Biol. Evol. , vol.4 , pp. 648-658
    • Carbone, L.1
  • 11
    • 22844438250 scopus 로고    scopus 로고
    • A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease
    • Chen JM, Stenson PD, Cooper DN, Ferec C. 2005. A systematic analysis of LINE-1 endonuclease-dependent retrotranspositional events causing human genetic disease. Hum. Genet. 117:411- 427.
    • (2005) Hum. Genet. , vol.117 , pp. 411-427
    • Chen, J.M.1    Stenson, P.D.2    Cooper, D.N.3    Ferec, C.4
  • 12
    • 74549204057 scopus 로고    scopus 로고
    • Chimpanzee Sequencing and Analysis Consortium. Initial sequence of the chimpanzee genome and comparison with the human genome
    • Chimpanzee Sequencing and Analysis Consortium. 2005. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69-87.
    • (2005) Nature , vol.437 , pp. 69-87
  • 13
    • 22544486545 scopus 로고    scopus 로고
    • R2 target-primed reverse transcription: ordered cleavage and polymerization steps by protein subunits asymmetrically bound to the target DNA
    • Christensen SM, Eickbush TH. 2005. R2 target-primed reverse transcription: ordered cleavage and polymerization steps by protein subunits asymmetrically bound to the target DNA. Mol. Cell. Biol. 25:6617- 6628.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 6617-6628
    • Christensen, S.M.1    Eickbush, T.H.2
  • 14
    • 63849260592 scopus 로고    scopus 로고
    • Diverse cis factors controlling Alu retrotransposition: what causes Alu elements to die
    • Comeaux MS, Roy-Engel AM, Hedges DJ, Deininger PL. 2009. Diverse cis factors controlling Alu retrotransposition: what causes Alu elements to die? Genome Res. 19:545-555.
    • (2009) Genome Res , vol.19 , pp. 545-555
    • Comeaux, M.S.1    Roy-Engel, A.M.2    Hedges, D.J.3    Deininger, P.L.4
  • 15
    • 0036847319 scopus 로고    scopus 로고
    • Human L1 element target-primed reverse transcription in vitro
    • Cost GJ, Feng Q, Jacquier A, Boeke JD. 2002. Human L1 element target-primed reverse transcription in vitro. EMBO J. 21:5899 -5910.
    • (2002) EMBO J , vol.21 , pp. 5899-5910
    • Cost, G.J.1    Feng, Q.2    Jacquier, A.3    Boeke, J.D.4
  • 16
    • 69349096044 scopus 로고    scopus 로고
    • L1 retrotransposition in human neural progenitor cells
    • Coufal NG, et al. 2009. L1 retrotransposition in human neural progenitor cells. Nature 460:1127-1131.
    • (2009) Nature , vol.460 , pp. 1127-1131
    • Coufal, N.G.1
  • 17
    • 70349335202 scopus 로고    scopus 로고
    • 5=-transducing SVA retrotransposon groups spread efficiently throughout the human genome
    • Damert A, et al. 2009. 5=-transducing SVA retrotransposon groups spread efficiently throughout the human genome. Genome Res. 19:1992- 2008.
    • (2009) Genome Res , vol.19 , pp. 1992-2008
    • Damert, A.1
  • 19
    • 0041353551 scopus 로고    scopus 로고
    • LINE-mediated retrotransposition of marked Alu sequences
    • Dewannieux M, Esnault C, Heidmann T. 2003. LINE-mediated retrotransposition of marked Alu sequences. Nat. Genet. 35:41- 48.
    • (2003) Nat. Genet. , vol.35 , pp. 41-48
    • Dewannieux, M.1    Esnault, C.2    Heidmann, T.3
  • 21
    • 0027248510 scopus 로고
    • Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element
    • Dombroski BA, Scott AF, Kazazian HH, Jr. 1993. Two additional potential retrotransposons isolated from a human L1 subfamily that contains an active retrotransposable element. Proc. Natl. Acad. Sci. U. S. A. 90: 6513-6517.
    • (1993) Proc. Natl. Acad. Sci. U. S. A. , vol.90 , pp. 6513-6517
    • Dombroski, B.A.1    Scott, A.F.2    Kazazian Jr., H.H.3
  • 22
    • 78449236016 scopus 로고    scopus 로고
    • Characterization of LINE-1 ribonucleoprotein particles
    • doi:10.1371/journal.pgen.1001150
    • Doucet Al J, et al. 2010. Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet. 6:e1001150. doi:10.1371/journal.pgen.1001150.
    • (2010) PLoS Genet , vol.6
    • Doucet Al, J.1
  • 23
    • 0034079713 scopus 로고    scopus 로고
    • Human LINE retrotransposons generate processed pseudogenes
    • Esnault C, Maestre J, Heidmann T. 2000. Human LINE retrotransposons generate processed pseudogenes. Nat. Genet. 24:363-367.
    • (2000) Nat. Genet. , vol.24 , pp. 363-367
    • Esnault, C.1    Maestre, J.2    Heidmann, T.3
  • 24
    • 77955160719 scopus 로고    scopus 로고
    • High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes
    • Ewing AD, Kazazian HH, Jr. 2010. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res. 20:1262-1270.
    • (2010) Genome Res , vol.20 , pp. 1262-1270
    • Ewing, A.D.1    Kazazian Jr., H.H.2
  • 25
    • 0009969062 scopus 로고    scopus 로고
    • Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition
    • Feng Q, Moran JV, Kazazian HH, Jr, Boeke JD. 1996. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 87:905-916.
    • (1996) Cell , vol.87 , pp. 905-916
    • Feng, Q.1    Moran, J.V.2    Kazazian Jr., H.H.3    Boeke, J.D.4
  • 26
    • 84868689431 scopus 로고
    • A modified indicator gene for selection of retrotransposition events in mammalian cells
    • Freeman JD, Goodchild NL, Mager DL. 1994. A modified indicator gene for selection of retrotransposition events in mammalian cells. Biotechniques 17:46, 48-49, 52.
    • (1994) Biotechniques , vol.52 , Issue.17-46 , pp. 48-49
    • Freeman, J.D.1    Goodchild, N.L.2    Mager, D.L.3
  • 27
    • 34248141710 scopus 로고    scopus 로고
    • Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase
    • Garcia-Perez JL, Doucet AJ, Bucheton A, Moran JV, Gilbert N. 2007. Distinct mechanisms for trans-mediated mobilization of cellular RNAs by the LINE-1 reverse transcriptase. Genome Res. 17:602- 611.
    • (2007) Genome Res , vol.17 , pp. 602-611
    • Garcia-Perez, J.L.1    Doucet, A.J.2    Bucheton, A.3    Moran, J.V.4    Gilbert, N.5
  • 28
    • 34447327537 scopus 로고    scopus 로고
    • LINE-1 retrotransposition in human embryonic stem cells
    • Garcia-Perez JL, et al. 2007. LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 16:1569 -1577.
    • (2007) Hum. Mol. Genet. , vol.16 , pp. 1569-1577
    • Garcia-Perez, J.L.1
  • 29
    • 77955495399 scopus 로고    scopus 로고
    • Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells
    • Garcia-Perez JL, et al. 2010. Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466: 769-773.
    • (2010) Nature , vol.466 , pp. 769-773
    • Garcia-Perez, J.L.1
  • 30
    • 78149432728 scopus 로고    scopus 로고
    • Variable tandem repeats accelerate evolution of coding and regulatory sequences
    • Gemayel R, Vinces MD, Legendre M, Verstrepen KJ. 2010. Variable tandem repeats accelerate evolution of coding and regulatory sequences. Annu. Rev. Genet. 44:445- 477.
    • (2010) Annu. Rev. Genet. , vol.44 , pp. 445-477
    • Gemayel, R.1    Vinces, M.D.2    Legendre, M.3    Verstrepen, K.J.4
  • 31
    • 23844510228 scopus 로고    scopus 로고
    • Multiple fates of L1 retrotransposition intermediates in cultured human cells
    • Gilbert N, Lutz S, Morrish TA, Moran JV. 2005. Multiple fates of L1 retrotransposition intermediates in cultured human cells. Mol. Cell. Biol. 25:7780 -7795.
    • (2005) Mol. Cell. Biol. , vol.25 , pp. 7780-7795
    • Gilbert, N.1    Lutz, S.2    Morrish, T.A.3    Moran, J.V.4
  • 32
    • 52949095077 scopus 로고    scopus 로고
    • Retrotransposons revisited: the restraint and rehabilitation of parasites
    • Goodier JL, Kazazian HH, Jr. 2008. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135:23-35.
    • (2008) Cell , vol.135 , pp. 23-35
    • Goodier, J.L.1    Kazazian Jr., H.H.2
  • 34
    • 34247333809 scopus 로고    scopus 로고
    • Mobile DNA in Old World monkeys: a glimpse through the rhesus macaque genome
    • Han K, et al. 2007. Mobile DNA in Old World monkeys: a glimpse through the rhesus macaque genome. Science 316:238 -240.
    • (2007) Science , vol.316 , pp. 238-240
    • Han, K.1
  • 35
    • 58049196782 scopus 로고    scopus 로고
    • L1 recombination-associated deletions generate human genomic variation
    • Han K, et al. 2008. L1 recombination-associated deletions generate human genomic variation. Proc. Natl. Acad. Sci. U. S. A. 105:19366 -19371.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 19366-19371
    • Han, K.1
  • 38
    • 77956862387 scopus 로고    scopus 로고
    • SVA retrotransposons: evolution and genetic instability
    • Hancks DC, Kazazian HH, Jr. 2010. SVA retrotransposons: evolution and genetic instability. Semin. Cancer Biol. 20:234 -245.
    • (2010) Semin. Cancer Biol. , vol.20 , pp. 234-245
    • Hancks, D.C.1    Kazazian Jr., H.H.2
  • 39
    • 84862507347 scopus 로고    scopus 로고
    • Active human retrotransposons: variation and disease
    • Hancks DC, Kazazian HH, Jr. 2012. Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22:191-203.
    • (2012) Curr. Opin. Genet. Dev. , vol.22 , pp. 191-203
    • Hancks, D.C.1    Kazazian Jr., H.H.2
  • 40
    • 0026699895 scopus 로고
    • Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element
    • Holmes SE, Singer MF, Swergold GD. 1992. Studies on p40, the leucine zipper motif-containing protein encoded by the first open reading frame of an active human LINE-1 transposable element. J. Biol. Chem. 267: 19765-19768.
    • (1992) J. Biol. Chem. , vol.267 , pp. 19765-19768
    • Holmes, S.E.1    Singer, M.F.2    Swergold, G.D.3
  • 41
    • 84975806579 scopus 로고    scopus 로고
    • Alu repeat discovery and characterization within human genomes
    • Hormozdiari F, et al. 2011. Alu repeat discovery and characterization within human genomes. Genome Res. 21:840-849.
    • (2011) Genome Res , vol.21 , pp. 840-849
    • Hormozdiari, F.1
  • 42
    • 77953892366 scopus 로고    scopus 로고
    • Mobile interspersed repeats are major structural variants in the human genome
    • Huang CR, et al. 2010. Mobile interspersed repeats are major structural variants in the human genome. Cell 141:1171-1182.
    • (2010) Cell , vol.141 , pp. 1171-1182
    • Huang, C.R.1
  • 43
    • 77953889472 scopus 로고    scopus 로고
    • Natural mutagenesis of human genomes by endogenous retrotransposons
    • Iskow RC, et al. 2010. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 141:1253-1261.
    • (2010) Cell , vol.141 , pp. 1253-1261
    • Iskow, R.C.1
  • 44
    • 23844525077 scopus 로고    scopus 로고
    • Repbase Update, a database of eukaryotic repetitive elements
    • Jurka J, et al. 2005. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet. Genome Res. 110:462- 467.
    • (2005) Cytogenet. Genome Res. , vol.110 , pp. 462-467
    • Jurka, J.1
  • 45
    • 66149168927 scopus 로고    scopus 로고
    • L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism
    • Kano H, et al. 2009. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes Dev. 23:1303-1312.
    • (2009) Genes Dev , vol.23 , pp. 1303-1312
    • Kano, H.1
  • 46
    • 84856409929 scopus 로고    scopus 로고
    • Detection of structural variants and indels within exome data
    • Karakoc E, et al. 2012. Detection of structural variants and indels within exome data. Nat. Methods 9:176 -178.
    • (2012) Nat. Methods , vol.9 , pp. 176-178
    • Karakoc, E.1
  • 47
    • 0023867459 scopus 로고
    • Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man
    • Kazazian HH, Jr et al. 1988. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164 -166.
    • (1988) Nature , vol.332 , pp. 164-166
    • Kazazian Jr., H.H.1
  • 48
    • 0036226603 scopus 로고    scopus 로고
    • BLAT-The BLAST-Like Alignment Tool
    • Kent WJ. 2002. BLAT-The BLAST-Like Alignment Tool. Genome Res. 12:656-664.
    • (2002) Genome Res , vol.12 , pp. 656-664
    • Kent, W.J.1
  • 49
    • 0032816281 scopus 로고    scopus 로고
    • Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells
    • Kimberland ML, et al. 1999. Full-length human L1 insertions retain the capacity for high frequency retrotransposition in cultured cells. Hum. Mol. Genet. 8:1557-1560.
    • (1999) Hum. Mol. Genet. , vol.8 , pp. 1557-1560
    • Kimberland, M.L.1
  • 50
    • 0032560851 scopus 로고    scopus 로고
    • An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy
    • Kobayashi K, et al. 1998. An ancient retrotransposal insertion causes Fukuyama-type congenital muscular dystrophy. Nature 394:388 -392.
    • (1998) Nature , vol.394 , pp. 388-392
    • Kobayashi, K.1
  • 51
    • 77956858478 scopus 로고    scopus 로고
    • A mobile threat to genome stability: the impact of non-LTR retrotransposons upon the human genome
    • Konkel MK, Batzer MA. 2010. A mobile threat to genome stability: the impact of non-LTR retrotransposons upon the human genome. Semin. Cancer Biol. 20:211-221.
    • (2010) Semin. Cancer Biol. , vol.20 , pp. 211-221
    • Konkel, M.K.1    Batzer, M.A.2
  • 52
    • 2042437650 scopus 로고    scopus 로고
    • Initial sequencing and analysis of the human genome
    • Lander E, et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860 -921.
    • (2001) Nature , vol.409 , pp. 860-921
    • Lander, E.1
  • 53
    • 8744318619 scopus 로고    scopus 로고
    • The human L1 promoter: variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity
    • Lavie L, Maldener E, Brouha B, Meese EU, Mayer J. 2004. The human L1 promoter: variable transcription initiation sites and a major impact of upstream flanking sequence on promoter activity. Genome Res. 14:2253- 2260.
    • (2004) Genome Res , vol.14 , pp. 2253-2260
    • Lavie, L.1    Maldener, E.2    Brouha, B.3    Meese, E.U.4    Mayer, J.5
  • 54
    • 79251553493 scopus 로고    scopus 로고
    • Comparative and demographic analysis of orangutan genomes
    • Locke DP, et al. 2011. Comparative and demographic analysis of orangutan genomes. Nature 469:529 -533.
    • (2011) Nature , vol.469 , pp. 529-533
    • Locke, D.P.1
  • 55
    • 0027450385 scopus 로고
    • Reverse transcription of R2BmRNAis primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition
    • Luan DD, Korman MH, Jakubczak JL, Eickbush TH. 1993. Reverse transcription of R2BmRNAis primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 72:595- 605.
    • (1993) Cell , vol.72 , pp. 595-605
    • Luan, D.D.1    Korman, M.H.2    Jakubczak, J.L.3    Eickbush, T.H.4
  • 56
    • 0035163939 scopus 로고    scopus 로고
    • Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon
    • Martin SL, Bushman FD. 2001. Nucleic acid chaperone activity of the ORF1 protein from the mouse LINE-1 retrotransposon. Mol. Cell. Biol. 21:467- 475.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 467-475
    • Martin, S.L.1    Bushman, F.D.2
  • 58
    • 77950862656 scopus 로고    scopus 로고
    • Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET
    • Matsui T, et al. 2010. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927-931.
    • (2010) Nature , vol.464 , pp. 927-931
    • Matsui, T.1
  • 59
    • 33947705203 scopus 로고    scopus 로고
    • Which transposable elements are active in the human genome
    • Mills RE, Bennett EA, Iskow RC, Devine SE. 2007. Which transposable elements are active in the human genome? Trends Genet. 23:183-191.
    • (2007) Trends Genet , vol.23 , pp. 183-191
    • Mills, R.E.1    Bennett, E.A.2    Iskow, R.C.3    Devine, S.E.4
  • 60
    • 33645464594 scopus 로고    scopus 로고
    • Recently mobilized transposons in the human and chimpanzee genomes
    • Mills RE, et al. 2006. Recently mobilized transposons in the human and chimpanzee genomes. Am. J. Hum. Genet. 78:671- 679.
    • (2006) Am. J. Hum. Genet. , vol.78 , pp. 671-679
    • Mills, R.E.1
  • 61
    • 0030606320 scopus 로고    scopus 로고
    • High frequency retrotransposition in cultured mammalian cells
    • Moran JV, et al. 1996. High frequency retrotransposition in cultured mammalian cells. Cell 87:917-927.
    • (1996) Cell , vol.87 , pp. 917-927
    • Moran, J.V.1
  • 62
    • 20544466648 scopus 로고    scopus 로고
    • Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition
    • Muotri AR, et al. 2005. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903-910.
    • (2005) Nature , vol.435 , pp. 903-910
    • Muotri, A.R.1
  • 63
    • 0023651425 scopus 로고
    • A novel human nonviral retroposon derived from an endogenous retrovirus
    • Ono M, Kawakami M, Takezawa T. 1987. A novel human nonviral retroposon derived from an endogenous retrovirus. Nucleic Acids Res. 15:8725- 8737.
    • (1987) Nucleic Acids Res , vol.15 , pp. 8725-8737
    • Ono, M.1    Kawakami, M.2    Takezawa, T.3
  • 64
    • 0035674903 scopus 로고    scopus 로고
    • Biology of mammalian L1 retrotransposons
    • Ostertag E, Kazazian H, Jr. 2001. Biology of mammalian L1 retrotransposons. Annu. Rev. Genet. 35:501-538.
    • (2001) Annu. Rev. Genet. , vol.35 , pp. 501-538
    • Ostertag, E.1    Kazazian Jr., H.2
  • 65
    • 0345636604 scopus 로고    scopus 로고
    • SVA elements are nonautonomous retrotransposons that cause disease in humans
    • Ostertag EM, Goodier JL, Zhang Y, Kazazian HH, Jr. 2003. SVA elements are nonautonomous retrotransposons that cause disease in humans. Am. J. Hum. Genet. 73:1444 -1451.
    • (2003) Am. J. Hum. Genet. , vol.73 , pp. 1444-1451
    • Ostertag, E.M.1    Goodier, J.L.2    Zhang, Y.3    Kazazian Jr., H.H.4
  • 67
    • 84857888415 scopus 로고    scopus 로고
    • The non-autonomous retrotransposon SVA is transmobilized by the human LINE-1 protein machinery
    • Raiz J, et al. 2012. The non-autonomous retrotransposon SVA is transmobilized by the human LINE-1 protein machinery. Nucleic Acids Res. 40:1666 -1683.
    • (2012) Nucleic Acids Res , vol.40 , pp. 1666-1683
    • Raiz, J.1
  • 68
    • 74549116659 scopus 로고    scopus 로고
    • KAP1 controls endogenous retroviruses in embryonic stem cells
    • Rowe HM, et al. 2010. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237-240.
    • (2010) Nature , vol.463 , pp. 237-240
    • Rowe, H.M.1
  • 69
    • 0030903621 scopus 로고    scopus 로고
    • Many human L1 elements are capable of retrotransposition
    • Sassaman DM, et al. 1997. Many human L1 elements are capable of retrotransposition. Nat. Genet. 16:37- 43.
    • (1997) Nat. Genet. , vol.16 , pp. 37-43
    • Sassaman, D.M.1
  • 70
    • 0023429458 scopus 로고
    • Origin of the human L1 elements: proposed progenitor genes deduced from a consensusDNAsequence
    • Scott AF, et al. 1987. Origin of the human L1 elements: proposed progenitor genes deduced from a consensusDNAsequence. Genomics 1:113- 125.
    • (1987) Genomics , vol.1 , pp. 113-125
    • Scott, A.F.1
  • 71
    • 33745244299 scopus 로고    scopus 로고
    • Human genomic deletions mediated by recombination between Alu elements
    • Sen SK, et al. 2006. Human genomic deletions mediated by recombination between Alu elements. Am. J. Hum. Genet. 79:41-53.
    • (2006) Am. J. Hum. Genet. , vol.79 , pp. 41-53
    • Sen, S.K.1
  • 72
    • 0028246851 scopus 로고
    • Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region
    • Shen L, et al. 1994. Structure and genetics of the partially duplicated gene RP located immediately upstream of the complement C4A and the C4B genes in the HLA class III region. Molecular cloning, exon-intron structure, composite retroposon, and breakpoint of gene duplication. J. Biol. Chem. 269:8466-8476.
    • (1994) Molecular cloning, exon-intron structure, composite retroposon, and breakpoint of gene duplication. J. Biol. Chem. , vol.269 , pp. 8466-8476
    • Shen, L.1
  • 73
    • 84857782508 scopus 로고    scopus 로고
    • Pathogenic orphan transduction created by a nonreference LINE-1 retrotransposon
    • Solyom S, et al. 2012. Pathogenic orphan transduction created by a nonreference LINE-1 retrotransposon. Hum. Mutat. 33:369 -371.
    • (2012) Hum. Mutat. , vol.33 , pp. 369-371
    • Solyom, S.1
  • 74
    • 0036230566 scopus 로고    scopus 로고
    • A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes
    • Strichman-Almashanu LZ, et al. 2002. A genome-wide screen for normally methylated human CpG islands that can identify novel imprinted genes. Genome Res. 12:543-554.
    • (2002) Genome Res , vol.12 , pp. 543-554
    • Strichman-Almashanu, L.Z.1
  • 75
    • 0025223152 scopus 로고
    • Identification, characterization, and cell specificity of a human LINE-1 promoter
    • Swergold GD. 1990. Identification, characterization, and cell specificity of a human LINE-1 promoter. Mol. Cell. Biol. 10:6718-6729.
    • (1990) Mol. Cell. Biol. , vol.10 , pp. 6718-6729
    • Swergold, G.D.1
  • 76
    • 80053898946 scopus 로고    scopus 로고
    • Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy
    • Taniguchi-Ikeda M, et al. 2011. Pathogenic exon-trapping by SVA retrotransposon and rescue in Fukuyama muscular dystrophy. Nature 478: 127-131.
    • (2011) Nature , vol.478 , pp. 127-131
    • Taniguchi-Ikeda, M.1
  • 77
    • 34447320759 scopus 로고    scopus 로고
    • L1 retrotransposition can occur early in human embryonic development
    • van den Hurk JA, et al. 2007. L1 retrotransposition can occur early in human embryonic development. Hum. Mol. Genet. 16:1587-1592.
    • (2007) Hum. Mol. Genet. , vol.16 , pp. 1587-1592
    • van den Hurk, J.A.1
  • 78
    • 84861872700 scopus 로고    scopus 로고
    • Insertion of an SVA element, a nonautonomous retrotransposon, in PMS2 intron 7 as a novel cause of Lynch syndrome
    • van der Klift HM, Tops CM, Hes FJ, Devilee P, Wijnen JT. 2012. Insertion of an SVA element, a nonautonomous retrotransposon, in PMS2 intron 7 as a novel cause of Lynch syndrome. Hum. Mutat. 33: 1051-1055.
    • (2012) Hum. Mutat. , vol.33 , pp. 1051-1055
    • van der Klift, H.M.1    Tops, C.M.2    Hes, F.J.3    Devilee, P.4    Wijnen, J.T.5
  • 79
    • 80053472753 scopus 로고    scopus 로고
    • Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee
    • Ventura M, et al. 2011. Gorilla genome structural variation reveals evolutionary parallelisms with chimpanzee. Genome Res. 21:1640 -1649.
    • (2011) Genome Res , vol.21 , pp. 1640-1649
    • Ventura, M.1
  • 80
    • 0025951042 scopus 로고
    • A de novo Alu insertion results in neurofibromatosis type 1
    • Wallace MR, et al. 1991. A de novo Alu insertion results in neurofibromatosis type 1. Nature 353:864-866.
    • (1991) Nature , vol.353 , pp. 864-866
    • Wallace, M.R.1
  • 81
    • 28444448708 scopus 로고    scopus 로고
    • SVA elements: a hominid-specific retroposon family
    • Wang H, et al. 2005. SVA elements: a hominid-specific retroposon family. J. Mol. Biol. 354:994 -1007.
    • (2005) J. Mol. Biol. , vol.354 , pp. 994-1007
    • Wang, H.1
  • 82
    • 0035144498 scopus 로고    scopus 로고
    • Human L1 retrotransposition: cis preference versus trans complementation
    • Wei W, et al. 2001. Human L1 retrotransposition: cis preference versus trans complementation. Mol. Cell. Biol. 21:1429 -1439.
    • (2001) Mol. Cell. Biol. , vol.21 , pp. 1429-1439
    • Wei, W.1
  • 83
    • 81755177867 scopus 로고    scopus 로고
    • The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion
    • doi:10.1371/journal.pgen.1002371
    • Wimmer K, Callens T, Wernstedt A, Messiaen L. 2011. The NF1 gene contains hotspots for L1 endonuclease-dependent de novo insertion. PLoS Genet. 7:e1002371. doi:10.1371/journal.pgen.1002371.
    • (2011) PLoS Genet , vol.7
    • Wimmer, K.1    Callens, T.2    Wernstedt, A.3    Messiaen, L.4
  • 84
    • 77954038084 scopus 로고    scopus 로고
    • Mobile element scanning (ME-Scan) by targeted high-throughput sequencing
    • doi: 10.1186/1471-2164-11-410
    • Witherspoon D, et al. 2010. Mobile element scanning (ME-Scan) by targeted high-throughput sequencing. BMC Genomics 11:410. doi: 10.1186/1471-2164-11-410.
    • (2010) BMC Genomics , vol.11 , pp. 410
    • Witherspoon, D.1
  • 85
    • 33845218958 scopus 로고    scopus 로고
    • Emergence of primate genes by retrotransposonmediated sequence transduction
    • Xing J, et al. 2006. Emergence of primate genes by retrotransposonmediated sequence transduction. Proc. Natl. Acad. Sci. U. S. A. 103: 17608-17613.
    • (2006) Proc. Natl. Acad. Sci. U. S. A. , vol.103 , pp. 17608-17613
    • Xing, J.1
  • 86
    • 84863867106 scopus 로고    scopus 로고
    • Transcriptional regulation of humanspecific SVAF1 retrotransposons by cis-regulatory MAST2 sequences
    • Zabolotneva AA, et al. 2012. Transcriptional regulation of humanspecific SVAF1 retrotransposons by cis-regulatory MAST2 sequences. Gene 505:128 -136.
    • (2012) Gene , vol.505 , pp. 128-136
    • Zabolotneva, A.A.1
  • 87
    • 0026531873 scopus 로고
    • A variable number of tandem repeats locus within the human complement C2 gene is associated with a retroposon derived from a human endogenous retrovirus
    • Zhu ZB, Hsieh SL, Bentley DR, Campbell RD, Volanakis JE. 1992. A variable number of tandem repeats locus within the human complement C2 gene is associated with a retroposon derived from a human endogenous retrovirus. J. Exp. Med. 175:1783-1787.
    • (1992) J. Exp. Med. , vol.175 , pp. 1783-1787
    • Zhu, Z.B.1    Hsieh, S.L.2    Bentley, D.R.3    Campbell, R.D.4    Volanakis, J.E.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.