메뉴 건너뛰기




Volumn 8, Issue 10, 2012, Pages

Topoisomerase II- and Condensin-Dependent Breakage of MEC1ATR-Sensitive Fragile Sites Occurs Independently of Spindle Tension, Anaphase, or Cytokinesis

Author keywords

[No Author keywords available]

Indexed keywords

ATR PROTEIN; CONDENSIN; DNA TOPOISOMERASE (ATP HYDROLYSING); PROTEIN MEC1; RAD52 PROTEIN; UNCLASSIFIED DRUG;

EID: 84868091320     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1002978     Document Type: Article
Times cited : (22)

References (73)
  • 1
    • 0037099681 scopus 로고    scopus 로고
    • Replication fork collapse at replication terminator sequences
    • Bidnenko V, Ehrlich S, Michel B, (2002) Replication fork collapse at replication terminator sequences. EMBO J 21: 3898-3907.
    • (2002) EMBO J , vol.21 , pp. 3898-3907
    • Bidnenko, V.1    Ehrlich, S.2    Michel, B.3
  • 2
    • 0037178723 scopus 로고    scopus 로고
    • ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones
    • Cha RS, Kleckner N, (2002) ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297: 602-606.
    • (2002) Science , vol.297 , pp. 602-606
    • Cha, R.S.1    Kleckner, N.2
  • 3
    • 0014930415 scopus 로고
    • Heritable fragile site on chromosome 16: probable localization of haptoglobin locus in man
    • Magenis R, Hecht R, Lovrien E, (1970) Heritable fragile site on chromosome 16: probable localization of haptoglobin locus in man. Science 170: 85-87.
    • (1970) Science , vol.170 , pp. 85-87
    • Magenis, R.1    Hecht, R.2    Lovrien, E.3
  • 5
    • 0000384235 scopus 로고    scopus 로고
    • Features of the chromosome terminus region
    • In: Neidhardt F, editor, Washington DC: ASM Press
    • Hill T (1996) Features of the chromosome terminus region. In: Neidhardt F, editor. Escherichia coli and Salmonella: Cellular and Molecular Biology. Washington DC: ASM Press. pp. 1602-1615.
    • (1996) Escherichia coli and Salmonella: Cellular and Molecular Biology , pp. 1602-1615
    • Hill, T.1
  • 6
    • 38049162608 scopus 로고    scopus 로고
    • Chromosome fragile sites
    • Durkin S, Glover T, (2007) Chromosome fragile sites. Ann Rev Gen 41: 169-192.
    • (2007) Ann Rev Gen , vol.41 , pp. 169-192
    • Durkin, S.1    Glover, T.2
  • 7
    • 0023614553 scopus 로고
    • Induction of sister chromatid exchanges at common fragile sites
    • Glover T, Stein C, (1987) Induction of sister chromatid exchanges at common fragile sites. Am J Hum Genet 41: 882-890.
    • (1987) Am J Hum Genet , vol.41 , pp. 882-890
    • Glover, T.1    Stein, C.2
  • 8
    • 0025268820 scopus 로고
    • Common fragile sites in man and three closely related primate species
    • Smeets D, van de Klundert F, (1990) Common fragile sites in man and three closely related primate species. Cytogenet Cell Genet 53: 8-14.
    • (1990) Cytogenet Cell Genet , vol.53 , pp. 8-14
    • Smeets, D.1    van de Klundert, F.2
  • 9
    • 0024671106 scopus 로고
    • Rodent common fragile sites: are they conserved? Evidence from mouse and rat
    • Elder F, Robinson T, (1989) Rodent common fragile sites: are they conserved? Evidence from mouse and rat. Chromosoma 97: 459-464.
    • (1989) Chromosoma , vol.97 , pp. 459-464
    • Elder, F.1    Robinson, T.2
  • 10
    • 0000237085 scopus 로고
    • Fragile sites in human chromosomes as regions of late-replicating DNA
    • Laird C, Jaffe E, Karpen G, Lamb M, Nelson R, (1987) Fragile sites in human chromosomes as regions of late-replicating DNA. TIB 3: 274-281.
    • (1987) TIB , vol.3 , pp. 274-281
    • Laird, C.1    Jaffe, E.2    Karpen, G.3    Lamb, M.4    Nelson, R.5
  • 11
    • 0021278143 scopus 로고
    • DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes
    • Glover T, Berger C, Coyle J, Echo B, (1984) DNA polymerase alpha inhibition by aphidicolin induces gaps and breaks at common fragile sites in human chromosomes. Hum Genet 67: 136-142.
    • (1984) Hum Genet , vol.67 , pp. 136-142
    • Glover, T.1    Berger, C.2    Coyle, J.3    Echo, B.4
  • 12
    • 0037074013 scopus 로고    scopus 로고
    • ATR regulates fragile site stability
    • Casper A, Nghiem P, Arlt M, Glover T, (2002) ATR regulates fragile site stability. Cell 111: 779-789.
    • (2002) Cell , vol.111 , pp. 779-789
    • Casper, A.1    Nghiem, P.2    Arlt, M.3    Glover, T.4
  • 13
    • 41649120947 scopus 로고    scopus 로고
    • Interplay between ATM and ATR in the regulation of common fragile site stability
    • Ozer-Galai E, Schwartz M, Rahat A, Kerem B, (2008) Interplay between ATM and ATR in the regulation of common fragile site stability. Oncogene 27: 2109-2117.
    • (2008) Oncogene , vol.27 , pp. 2109-2117
    • Ozer-Galai, E.1    Schwartz, M.2    Rahat, A.3    Kerem, B.4
  • 14
    • 27744496209 scopus 로고    scopus 로고
    • Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability
    • Schwartz M, Zlotorynski E, Goldberg M, Ozeri E, Rahat A, et al.(2005) Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability. Genes Dev 19: 2715-2726.
    • (2005) Genes Dev , vol.19 , pp. 2715-2726
    • Schwartz, M.1    Zlotorynski, E.2    Goldberg, M.3    Ozeri, E.4    Rahat, A.5
  • 15
    • 29144522146 scopus 로고    scopus 로고
    • Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites
    • El Achkar E, Gerbault-Seureau M, Muleris M, Dutrillaux B, Debatisse M, (2005) Premature condensation induces breaks at the interface of early and late replicating chromosome bands bearing common fragile sites. Proc Natl Acad Sci U S A 102: 18069-18074.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 18069-18074
    • El Achkar, E.1    Gerbault-Seureau, M.2    Muleris, M.3    Dutrillaux, B.4    Debatisse, M.5
  • 16
    • 67349187702 scopus 로고    scopus 로고
    • The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities
    • Naim V, Rosselli F, (2009) The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities. Nat Cell Biol 11: 761-768.
    • (2009) Nat Cell Biol , vol.11 , pp. 761-768
    • Naim, V.1    Rosselli, F.2
  • 17
    • 67349227137 scopus 로고    scopus 로고
    • Replication stress induces sister-chromatid bridging at fragile site loci in mitosis
    • Chan K, Palmai-Pallag T, Ying S, Hickson I, (2009) Replication stress induces sister-chromatid bridging at fragile site loci in mitosis. Nat Cell Biol 11: 753-760.
    • (2009) Nat Cell Biol , vol.11 , pp. 753-760
    • Chan, K.1    Palmai-Pallag, T.2    Ying, S.3    Hickson, I.4
  • 18
    • 30944462801 scopus 로고    scopus 로고
    • Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast
    • Admire A, Shanks L, Danzl N, Wang M, Weier U, et al.(2006) Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev 20: 159-173.
    • (2006) Genes Dev , vol.20 , pp. 159-173
    • Admire, A.1    Shanks, L.2    Danzl, N.3    Wang, M.4    Weier, U.5
  • 19
    • 79251584616 scopus 로고    scopus 로고
    • Regulation of fragile sites expression in budding yeast by MEC1, RRM3 and hydroxyurea
    • Hashash N, Johnson AL, Cha RS, (2011) Regulation of fragile sites expression in budding yeast by MEC1, RRM3 and hydroxyurea. J Cell Sci 124: 181-185.
    • (2011) J Cell Sci , vol.124 , pp. 181-185
    • Hashash, N.1    Johnson, A.L.2    Cha, R.S.3
  • 20
    • 14844286404 scopus 로고    scopus 로고
    • Chromosomal translocations in yeast induced by low levels of DNA polymerase: A model for chromosome fragile sites
    • Lemoine F, Degtyareva N, Lobachev K, Petes T, (2005) Chromosomal translocations in yeast induced by low levels of DNA polymerase: A model for chromosome fragile sites. Cell 120: 587-598.
    • (2005) Cell , vol.120 , pp. 587-598
    • Lemoine, F.1    Degtyareva, N.2    Lobachev, K.3    Petes, T.4
  • 21
    • 1642417690 scopus 로고    scopus 로고
    • Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p
    • Torres J, Bessler J, Zakian V, (2004) Local chromatin structure at the ribosomal DNA causes replication fork pausing and genome instability in the absence of the S. cerevisiae DNA helicase Rrm3p. Genes Dev 18: 498-503.
    • (2004) Genes Dev , vol.18 , pp. 498-503
    • Torres, J.1    Bessler, J.2    Zakian, V.3
  • 22
    • 0028013488 scopus 로고
    • Nature and distribution of chromosomal intertwinings in Saccharomyces cerevisiae
    • Spell RM, Holm C, (1994) Nature and distribution of chromosomal intertwinings in Saccharomyces cerevisiae. Mol Cell Biol 14: 1465-1476.
    • (1994) Mol Cell Biol , vol.14 , pp. 1465-1476
    • Spell, R.M.1    Holm, C.2
  • 23
    • 69449108384 scopus 로고    scopus 로고
    • Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription
    • Bermejo R, Carpra T, Gonzalez-Huici V, Fachinetti D, Cocito A, et al.(2009) Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription. Cell 138: 870-884.
    • (2009) Cell , vol.138 , pp. 870-884
    • Bermejo, R.1    Carpra, T.2    Gonzalez-Huici, V.3    Fachinetti, D.4    Cocito, A.5
  • 24
    • 0027971222 scopus 로고
    • An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae
    • Kato R, Ogawa H, (1994) An essential gene, ESR1, is required for mitotic cell growth, DNA repair and meiotic recombination in Saccharomyces cerevisiae. Nucleic Acids Res 22: 3104-3112.
    • (1994) Nucleic Acids Res , vol.22 , pp. 3104-3112
    • Kato, R.1    Ogawa, H.2
  • 25
    • 34547700612 scopus 로고    scopus 로고
    • Meiotic roles of Mec1, a budding yeast homolog of mammalian ATR/ATM
    • Carballo JA, Cha RS, (2007) Meiotic roles of Mec1, a budding yeast homolog of mammalian ATR/ATM. Chromosome Res 15: 539-550.
    • (2007) Chromosome Res , vol.15 , pp. 539-550
    • Carballo, J.A.1    Cha, R.S.2
  • 26
    • 39749184166 scopus 로고    scopus 로고
    • Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination
    • Carballo JA, Johnson AL, Sedgwick SG, Cha RS, (2008) Phosphorylation of the axial element protein Hop1 by Mec1/Tel1 ensures meiotic interhomolog recombination. Cell 132: 758-770.
    • (2008) Cell , vol.132 , pp. 758-770
    • Carballo, J.A.1    Johnson, A.L.2    Sedgwick, S.G.3    Cha, R.S.4
  • 27
    • 0028353634 scopus 로고
    • Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair
    • Weinert TA, Kiser GL, Hartwell LH, (1994) Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev 8: 652-665.
    • (1994) Genes Dev , vol.8 , pp. 652-665
    • Weinert, T.A.1    Kiser, G.L.2    Hartwell, L.H.3
  • 28
    • 0032161269 scopus 로고    scopus 로고
    • A suppressor of two essential checkpoint genes identifies novel protein that negatively affects dNTP pools
    • Zhao X, Muller EGD, Rothstein R, (1998) A suppressor of two essential checkpoint genes identifies novel protein that negatively affects dNTP pools. Mol Cell 2: 329-340.
    • (1998) Mol Cell , vol.2 , pp. 329-340
    • Zhao, X.1    Muller, E.G.D.2    Rothstein, R.3
  • 29
    • 0035796505 scopus 로고    scopus 로고
    • The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage
    • Zhao X, Chabes A, Domkin V, Thelander L, Rothstein R, (2001) The ribonucleotide reductase inhibitor Sml1 is a new target of the Mec1/Rad53 kinase cascade during growth and in response to DNA damage. EMBO J 20: 3544-3553.
    • (2001) EMBO J , vol.20 , pp. 3544-3553
    • Zhao, X.1    Chabes, A.2    Domkin, V.3    Thelander, L.4    Rothstein, R.5
  • 30
    • 0032530824 scopus 로고    scopus 로고
    • Recovery from DNA replicational stress is the essential function of the S phase checkpoint pathway
    • Desany B, Alcasabas AA, Bachant JB, Elledge SJ, (1998) Recovery from DNA replicational stress is the essential function of the S phase checkpoint pathway. Genes Dev 12: 2956-2970.
    • (1998) Genes Dev , vol.12 , pp. 2956-2970
    • Desany, B.1    Alcasabas, A.A.2    Bachant, J.B.3    Elledge, S.J.4
  • 31
    • 78049369559 scopus 로고    scopus 로고
    • The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage
    • Andreson B, Gupta A, Georgieva B, Rothstein R, (2010) The ribonucleotide reductase inhibitor, Sml1, is sequentially phosphorylated, ubiquitylated and degraded in response to DNA damage. Nucleic Acids Res 38: 6490-6501.
    • (2010) Nucleic Acids Res , vol.38 , pp. 6490-6501
    • Andreson, B.1    Gupta, A.2    Georgieva, B.3    Rothstein, R.4
  • 32
    • 0035797383 scopus 로고    scopus 로고
    • The DNA replication checkpoint response stablizes stalled replication forks
    • Lopes M, Cotta-Ramusino C, Pellicioli A, Liberi G, Plevani P, et al.(2001) The DNA replication checkpoint response stablizes stalled replication forks. Nature 412: 557-561.
    • (2001) Nature , vol.412 , pp. 557-561
    • Lopes, M.1    Cotta-Ramusino, C.2    Pellicioli, A.3    Liberi, G.4    Plevani, P.5
  • 33
    • 0035797444 scopus 로고    scopus 로고
    • Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint
    • Tercero J, Diffley J, (2001) Regulation of DNA replication fork progression through damaged DNA by the Mec1/Rad53 checkpoint. Nature 412: 553-556.
    • (2001) Nature , vol.412 , pp. 553-556
    • Tercero, J.1    Diffley, J.2
  • 34
    • 13144283613 scopus 로고    scopus 로고
    • Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site
    • Mishmar D, Rahat A, Scherer S, Nyakatura G, Hinzmann B, et al.(1998) Molecular characterization of a common fragile site (FRA7H) on human chromosome 7 by the cloning of a simian virus 40 integration site. Proc Natl Acad Sci U S A 95: 8141-8146.
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 8141-8146
    • Mishmar, D.1    Rahat, A.2    Scherer, S.3    Nyakatura, G.4    Hinzmann, B.5
  • 35
    • 34547205070 scopus 로고    scopus 로고
    • An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae
    • Zhang H, Freudenreich C, (2007) An AT-rich sequence in human common fragile site FRA16D causes fork stalling and chromosome breakage in S. cerevisiae. Mol Cell 27: 367-379.
    • (2007) Mol Cell , vol.27 , pp. 367-379
    • Zhang, H.1    Freudenreich, C.2
  • 36
    • 0024291357 scopus 로고
    • A replication fork barrier at the 3′ end of yeast ribosomal RNA genes
    • Brewer BJ, Fangman WL, (1988) A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell 55: 637-643.
    • (1988) Cell , vol.55 , pp. 637-643
    • Brewer, B.J.1    Fangman, W.L.2
  • 37
    • 0034664767 scopus 로고    scopus 로고
    • swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe
    • Dalgaard J, Klar A, (2000) swi1 and swi3 perform imprinting, pausing, and termination of DNA replication in S. pombe. Cell 102: 745-751.
    • (2000) Cell , vol.102 , pp. 745-751
    • Dalgaard, J.1    Klar, A.2
  • 38
    • 0034595010 scopus 로고    scopus 로고
    • The importance of repairing stalled replication forks
    • Cox M, Goodman M, Kreuzer K, Sherratt D, Sandler S, et al.(2000) The importance of repairing stalled replication forks. Nature 404: 37-41.
    • (2000) Nature , vol.404 , pp. 37-41
    • Cox, M.1    Goodman, M.2    Kreuzer, K.3    Sherratt, D.4    Sandler, S.5
  • 39
    • 34147217542 scopus 로고    scopus 로고
    • Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map
    • Collins S, Miller K, Maas N, Roguev A, Fillingham J, et al.(2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446: 806-810.
    • (2007) Nature , vol.446 , pp. 806-810
    • Collins, S.1    Miller, K.2    Maas, N.3    Roguev, A.4    Fillingham, J.5
  • 40
    • 77955479780 scopus 로고    scopus 로고
    • Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange
    • Lambert S, Mizuno K, Blaisonneau J, Martineau S, Chanet R, et al.(2010) Homologous recombination restarts blocked replication forks at the expense of genome rearrangements by template exchange. Mol Cell pp. 346-359.
    • (2010) Mol Cell , pp. 346-359
    • Lambert, S.1    Mizuno, K.2    Blaisonneau, J.3    Martineau, S.4    Chanet, R.5
  • 41
    • 0037169325 scopus 로고    scopus 로고
    • The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements
    • Lobachev K, Gordenin D, Resnick M, (2002) The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108: 183-193.
    • (2002) Cell , vol.108 , pp. 183-193
    • Lobachev, K.1    Gordenin, D.2    Resnick, M.3
  • 42
    • 52049119340 scopus 로고    scopus 로고
    • Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae
    • Coté A, Lewis S, (2008) Mus81-dependent double-strand DNA breaks at in vivo-generated cruciform structures in S. cerevisiae. Mol Cell 31: 800-812.
    • (2008) Mol Cell , vol.31 , pp. 800-812
    • Coté, A.1    Lewis, S.2
  • 43
    • 0346155805 scopus 로고    scopus 로고
    • The spindle assembly and spindle position checkpoints
    • Lew D, Burke D, (2003) The spindle assembly and spindle position checkpoints. Annu Rev Genet 37: 251-282.
    • (2003) Annu Rev Genet , vol.37 , pp. 251-282
    • Lew, D.1    Burke, D.2
  • 44
    • 40149103158 scopus 로고    scopus 로고
    • DNA damage activates the SAC in an ATM/ATR dependent manner, independently of the kinetochore
    • Kim E, Burke D, (2008) DNA damage activates the SAC in an ATM/ATR dependent manner, independently of the kinetochore. PLoS Genetics 4: e1000015 doi:10.1371/journal.pgen.1000015.
    • (2008) PLoS Genetics , vol.4
    • Kim, E.1    Burke, D.2
  • 45
    • 9744272519 scopus 로고    scopus 로고
    • DNA replication checkpoint prevents precocious chromosome segregation by regulating spindle behavior
    • Krishnan V, Nirantar S, Crasta K, Cheng A, Surana U, (2004) DNA replication checkpoint prevents precocious chromosome segregation by regulating spindle behavior. Mol Cell 16: 687-700.
    • (2004) Mol Cell , vol.16 , pp. 687-700
    • Krishnan, V.1    Nirantar, S.2    Crasta, K.3    Cheng, A.4    Surana, U.5
  • 46
    • 16844372843 scopus 로고    scopus 로고
    • The yeast S phase checkpoint enables replicating chromosomes to bi-orient and restrain spindle extension during S phase distress
    • Bachant J, Jessen S, Kavanaugh S, Fielding C, (2005) The yeast S phase checkpoint enables replicating chromosomes to bi-orient and restrain spindle extension during S phase distress. J Cell Biol 168: 999-1012.
    • (2005) J Cell Biol , vol.168 , pp. 999-1012
    • Bachant, J.1    Jessen, S.2    Kavanaugh, S.3    Fielding, C.4
  • 47
    • 0034721669 scopus 로고    scopus 로고
    • Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast
    • Uhlmann F, Wernic D, Poupart M-A, Koonin E, Nasmyth K, (2000) Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103: 375-386.
    • (2000) Cell , vol.103 , pp. 375-386
    • Uhlmann, F.1    Wernic, D.2    Poupart, M.-A.3    Koonin, E.4    Nasmyth, K.5
  • 48
    • 0023651332 scopus 로고
    • DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe
    • Uemura T, Ohkura H, Adachi Y, Morino K, Shiozaki K, et al.(1987) DNA topoisomerase II is required for condensation and separation of mitotic chromosomes in S. pombe. Cell 50: 917-925.
    • (1987) Cell , vol.50 , pp. 917-925
    • Uemura, T.1    Ohkura, H.2    Adachi, Y.3    Morino, K.4    Shiozaki, K.5
  • 49
    • 0343526732 scopus 로고    scopus 로고
    • Premitotic chromosome individualization in mammalian cells depends on topoisomerase II activity
    • Gimenez-Abian J, Clarke D, Devlin J, Gimenez-Abian M, De la Torre C, et al.(2000) Premitotic chromosome individualization in mammalian cells depends on topoisomerase II activity. Chromosoma 109: 235-244.
    • (2000) Chromosoma , vol.109 , pp. 235-244
    • Gimenez-Abian, J.1    Clarke, D.2    Devlin, J.3    Gimenez-Abian, M.4    de la Torre, C.5
  • 50
    • 0030886602 scopus 로고    scopus 로고
    • A direct link between sister chromtid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae
    • Guacci V, Koshland D, Strunnikov A, (1997) A direct link between sister chromtid cohesion and chromosome condensation revealed through the analysis of MCD1 in S. cerevisiae. Cell 91: 47-57.
    • (1997) Cell , vol.91 , pp. 47-57
    • Guacci, V.1    Koshland, D.2    Strunnikov, A.3
  • 51
    • 0032511150 scopus 로고    scopus 로고
    • An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast
    • Ciosk R, Zachariae W, Michaelis C, Shevchenko A, Mann M, et al.(1998) An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell 93: 1067-1076.
    • (1998) Cell , vol.93 , pp. 1067-1076
    • Ciosk, R.1    Zachariae, W.2    Michaelis, C.3    Shevchenko, A.4    Mann, M.5
  • 52
    • 0034111790 scopus 로고    scopus 로고
    • Mitotic chromosome condensation requires Brn1p, the yeast homologue of Barren
    • Lavoie B, Tuffo K, Oh S, Koshland D, Holm C, (2000) Mitotic chromosome condensation requires Brn1p, the yeast homologue of Barren. Mol Biol Cell 11: 1293-1304.
    • (2000) Mol Biol Cell , vol.11 , pp. 1293-1304
    • Lavoie, B.1    Tuffo, K.2    Oh, S.3    Koshland, D.4    Holm, C.5
  • 53
    • 22344439942 scopus 로고    scopus 로고
    • Dynamic molecular linkers of the genome: the first decade of SMC proteins
    • Losada A, Hirano T, (2005) Dynamic molecular linkers of the genome: the first decade of SMC proteins. Genes Dev 19: 1269-1287.
    • (2005) Genes Dev , vol.19 , pp. 1269-1287
    • Losada, A.1    Hirano, T.2
  • 54
    • 0029134732 scopus 로고
    • A postprophase topoisomerase II-dependent chromatid core separation step in the formation of metaphase chromosomes
    • Gimenez-Abian J, Clarke D, Mullinger A, Downes C, Johnston R, (1995) A postprophase topoisomerase II-dependent chromatid core separation step in the formation of metaphase chromosomes. J Cell Biol 131: 7-17.
    • (1995) J Cell Biol , vol.131 , pp. 7-17
    • Gimenez-Abian, J.1    Clarke, D.2    Mullinger, A.3    Downes, C.4    Johnston, R.5
  • 55
    • 0033577702 scopus 로고    scopus 로고
    • Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage
    • Alexandru G, Zachariae W, Schleiffer A, Nasmyth K, (1999) Sister chromatid separation and chromosome re-duplication are regulated by different mechanisms in response to spindle damage. EMBO J 18: 2707-2721.
    • (1999) EMBO J , vol.18 , pp. 2707-2721
    • Alexandru, G.1    Zachariae, W.2    Schleiffer, A.3    Nasmyth, K.4
  • 56
    • 0032494183 scopus 로고    scopus 로고
    • Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis
    • Bi E, Maddox P, Lew D, Salmon E, McMillan J, et al.(1998) Involvement of an actomyosin contractile ring in Saccharomyces cerevisiae cytokinesis. J Cell Biol 142: 1301-1312.
    • (1998) J Cell Biol , vol.142 , pp. 1301-1312
    • Bi, E.1    Maddox, P.2    Lew, D.3    Salmon, E.4    McMillan, J.5
  • 57
    • 0037018157 scopus 로고    scopus 로고
    • In vivo dissection of the chromosome condensation machinery: reversibility of condensation distinguishes contributions of condensin and cohesin
    • Lavoie B, Hogan E, Koshland D, (2002) In vivo dissection of the chromosome condensation machinery: reversibility of condensation distinguishes contributions of condensin and cohesin. J Cell Biol 156: 805-815.
    • (2002) J Cell Biol , vol.156 , pp. 805-815
    • Lavoie, B.1    Hogan, E.2    Koshland, D.3
  • 58
    • 0028174255 scopus 로고
    • Chromosome condensation and sister chromatid pairing in budding yeast
    • Guacci V, Hogan E, Koshland D, (1994) Chromosome condensation and sister chromatid pairing in budding yeast. J Cell Biol 125: 517-530.
    • (1994) J Cell Biol , vol.125 , pp. 517-530
    • Guacci, V.1    Hogan, E.2    Koshland, D.3
  • 59
    • 0028942904 scopus 로고
    • SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family
    • Strunnikov A, Hogan E, Koshland D, (1995) SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev 9: 587-599.
    • (1995) Genes Dev , vol.9 , pp. 587-599
    • Strunnikov, A.1    Hogan, E.2    Koshland, D.3
  • 60
    • 33846794442 scopus 로고    scopus 로고
    • In vivo analysis of chromosome condensation in Saccharomyces cerevisiae
    • Vas A, Andrews C, Kirkland Matesky K, Clarke D, (2007) In vivo analysis of chromosome condensation in Saccharomyces cerevisiae. Mol Biol Cell 18: 557-568.
    • (2007) Mol Biol Cell , vol.18 , pp. 557-568
    • Vas, A.1    Andrews, C.2    Kirkland Matesky, K.3    Clarke, D.4
  • 61
    • 0036896143 scopus 로고    scopus 로고
    • Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis
    • Losada A, Hirano M, Hirano T, (2002) Cohesin release is required for sister chromatid resolution, but not for condensin-mediated compaction, at the onset of mitosis. Genes Dev 16: 3004-3016.
    • (2002) Genes Dev , vol.16 , pp. 3004-3016
    • Losada, A.1    Hirano, M.2    Hirano, T.3
  • 62
    • 0011173714 scopus 로고
    • DNA topoisomearse II mutant of Saccharomyces cerevisiae: Topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication
    • DiNardo S, Voelkel K, Sternglanz R, (1984) DNA topoisomearse II mutant of Saccharomyces cerevisiae: Topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc Natl Acad Sci U S A 81: 2616-2620.
    • (1984) Proc Natl Acad Sci U S A , vol.81 , pp. 2616-2620
    • DiNardo, S.1    Voelkel, K.2    Sternglanz, R.3
  • 63
    • 71549122891 scopus 로고    scopus 로고
    • Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress
    • Feng W, Bachant J, Collingwood D, Raghuraman M, Brewer B, (2009) Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress. Genetics 183: 1249-1260.
    • (2009) Genetics , vol.183 , pp. 1249-1260
    • Feng, W.1    Bachant, J.2    Collingwood, D.3    Raghuraman, M.4    Brewer, B.5
  • 64
    • 41149112015 scopus 로고    scopus 로고
    • Beyond the code: the mechanical properties of DNA as they relate to mitosis
    • Bloom K, (2008) Beyond the code: the mechanical properties of DNA as they relate to mitosis. Chromosoma 117: 103-110.
    • (2008) Chromosoma , vol.117 , pp. 103-110
    • Bloom, K.1
  • 65
    • 0000734376 scopus 로고
    • Stretching DNA with a receding meniscus: Experiments and models
    • Bensimon D, Simon A, Croquette V, Bensimon A, (1995) Stretching DNA with a receding meniscus: Experiments and models. Phys Rev Lett 74: 4754-4757.
    • (1995) Phys Rev Lett , vol.74 , pp. 4754-4757
    • Bensimon, D.1    Simon, A.2    Croquette, V.3    Bensimon, A.4
  • 66
    • 80053544629 scopus 로고    scopus 로고
    • Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis
    • Matos J, Blanco M, Maslen S, Skehel J, SC W, (2011) Regulatory control of the resolution of DNA recombination intermediates during meiosis and mitosis. Cell 147: 158-172.
    • (2011) Cell , vol.147 , pp. 158-172
    • Matos, J.1    Blanco, M.2    Maslen, S.3    Skehel, J.S.C.W.4
  • 67
    • 0035833662 scopus 로고    scopus 로고
    • DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae
    • Broomfield S, Hryciw T, Xiao W, (2001) DNA postreplication repair and mutagenesis in Saccharomyces cerevisiae. Mutat Res 486: 167-184.
    • (2001) Mutat Res , vol.486 , pp. 167-184
    • Broomfield, S.1    Hryciw, T.2    Xiao, W.3
  • 68
    • 84868130069 scopus 로고    scopus 로고
    • Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation
    • Feng W, Di Rienzi S, Raghuraman M, Brewer B, (2011) Replication stress-induced chromosome breakage is correlated with replication fork progression and is preceded by single-stranded DNA formation. G3 1: 327-335.
    • (2011) G3 , vol.1 , pp. 327-335
    • Feng, W.1    Di Rienzi, S.2    Raghuraman, M.3    Brewer, B.4
  • 69
    • 44949208460 scopus 로고    scopus 로고
    • Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast
    • Baxter J, Diffley J, (2008) Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. Mol Cell 30: 790-802.
    • (2008) Mol Cell , vol.30 , pp. 790-802
    • Baxter, J.1    Diffley, J.2
  • 70
    • 0032127940 scopus 로고    scopus 로고
    • Identification of Xenopus SMC protein complexes required for sister chromatid cohesion
    • Losada A, Hirano M, Hirano T, (1998) Identification of Xenopus SMC protein complexes required for sister chromatid cohesion. Gene Dev 12: 1986-1997.
    • (1998) Gene Dev , vol.12 , pp. 1986-1997
    • Losada, A.1    Hirano, M.2    Hirano, T.3
  • 71
    • 20444424939 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements and elevated recombination at an inducible site-specific recombination fork barrier
    • Lambert S, Watson D, Sheedy D, Martin B, Carr A, (2005) Gross chromosomal rearrangements and elevated recombination at an inducible site-specific recombination fork barrier. Cell 121: 689-702.
    • (2005) Cell , vol.121 , pp. 689-702
    • Lambert, S.1    Watson, D.2    Sheedy, D.3    Martin, B.4    Carr, A.5
  • 72
    • 0034721721 scopus 로고    scopus 로고
    • Direct coupling between meiotic DNA replication and recombination initiation
    • Borde V, Goldman AS, Lichten M, (2000) Direct coupling between meiotic DNA replication and recombination initiation. Science 290: 806-809.
    • (2000) Science , vol.290 , pp. 806-809
    • Borde, V.1    Goldman, A.S.2    Lichten, M.3
  • 73
    • 0034007469 scopus 로고    scopus 로고
    • Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p
    • Cha RS, Weiner BM, Keeney S, Dekker J, Kleckner N, (2000) Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p. Genes Dev 14: 493-503.
    • (2000) Genes Dev , vol.14 , pp. 493-503
    • Cha, R.S.1    Weiner, B.M.2    Keeney, S.3    Dekker, J.4    Kleckner, N.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.