-
1
-
-
0036275357
-
Drug resistance towards etoposide and cisplatin in human melanoma cells is associated with drug-dependent apoptosis deficiency
-
DOI 10.1046/j.1523-1747.2002.01786.x
-
Helmbach H, Kern MA, Rossmann E, Renz K, Kissel C, Gschwendt B, et al. Drug resistance towards etopo-side and cisplatin in human melanoma cells is associated with drug-dependent apoptosis deficiency. J Invest Dermatol 2002;118:923-32; PMID:12060385; http://dx.doi.org/10.1046/j.1523-1747.2002. 01786.x. (Pubitemid 34639169)
-
(2002)
Journal of Investigative Dermatology
, vol.118
, Issue.6
, pp. 923-932
-
-
Helmbach, H.1
Kern, M.A.2
Rossmann, E.3
Renz, K.4
Kissel, C.5
Gschwendt, B.6
Schadendorf, D.7
-
2
-
-
26444583296
-
δNp63α levels correlate with clinical tumor response to cisplatin
-
Zangen R, Ratovitski EA, Sidransky D. DeltaNp63α levels correlate with clinical tumor response to cisplatin. Cell Cycle 2005;4:1313-5; PMID:16123597; http://dx.doi.org/10.4161/cc.4.10.2066. (Pubitemid 41437109)
-
(2005)
Cell Cycle
, vol.4
, Issue.10
, pp. 1313-1315
-
-
Zangen, R.1
Ratovitski, E.2
Sidransky, D.3
-
3
-
-
34547100275
-
The resurgence of platinum-based cancer chemotherapy
-
DOI 10.1038/nrc2167, PII NRC2167
-
Kelland L. The resurgence of platinum-based cancer chemotherapy. Nat Rev Cancer 2007;7:573-84; PMID:17625587; http://dx.doi.org/10.1038/nrc2167. (Pubitemid 47106628)
-
(2007)
Nature Reviews Cancer
, vol.7
, Issue.8
, pp. 573-584
-
-
Kelland, L.1
-
4
-
-
84859771379
-
Molecular mechanisms of cisplatin resistance
-
PMID:21892204; http://dx.doi.org/10.1038/onc.2011.384
-
Galluzzi L, Senovilla L, Vitale I, Michels J, Martins I, Kepp O, et al. Molecular mechanisms of cisplatin resistance. Oncogene 2012;31:1869-83; PMID:21892204; http://dx.doi.org/10.1038/onc.2011.384.
-
(2012)
Oncogene
, vol.31
, pp. 1869-1883
-
-
Galluzzi, L.1
Senovilla, L.2
Vitale, I.3
Michels, J.4
Martins, I.5
Kepp, O.6
-
5
-
-
0037041392
-
P63 and p73 are required for p53-dependent apoptosis in response to DNA damage
-
DOI 10.1038/416560a
-
Flores ER, Tsai KY, Crowley D, Sengupta S, Yang A, McKeon F, et al. Tsai K, Crowley D, Sengupta S, Yang A, McKeon F, Jacks T. P63 and p73 are required for TP53-dependent apoptosis in response to DNA damage. Nature 2002;416:560-4; PMID:11932750; http://dx.doi.org/10.1038/416560a. (Pubitemid 34288861)
-
(2002)
Nature
, vol.416
, Issue.6880
, pp. 560-564
-
-
Flores, E.R.1
Tsai, K.Y.2
Crowley, D.3
Sengupta, S.4
Yang, A.5
McKeon, F.6
Jacks, T.7
-
6
-
-
30344450404
-
P63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis
-
DOI 10.1016/j.ccr.2005.12.013, PII S1535610805003946
-
Rocco JW, Leong CO, Kuperwasser N, DeYoung M P, Ellisen LW. p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 2006;9:45-56; PMID:16413471; http://dx.doi.org/10.1016/j.ccr.2005. 12.013. (Pubitemid 43069510)
-
(2006)
Cancer Cell
, vol.9
, Issue.1
, pp. 45-56
-
-
Rocco, J.W.1
Leong, C.-O.2
Kuperwasser, N.3
DeYoung, M.P.4
Ellisen, L.W.5
-
7
-
-
77949879162
-
Chemotherapy-induced apoptosis in hepatocellular carcinoma involves the p53 family and is mediated via the extrinsic and the intrinsic pathway
-
PMID:19711344
-
Seitz SJ, Schleithoff ES, Koch A, Schuster A, Teufel A, Staib F, et al. Chemotherapy-induced apoptosis in hepatocellular carcinoma involves the p53 family and is mediated via the extrinsic and the intrinsic pathway. Int J Cancer 2010;126:2049-66; PMID:19711344.
-
(2010)
Int J Cancer
, vol.126
, pp. 2049-2066
-
-
Seitz, S.J.1
Schleithoff, E.S.2
Koch, A.3
Schuster, A.4
Teufel, A.5
Staib, F.6
-
8
-
-
0034676455
-
Surfing the p53 network
-
PMID:11099028; http://dx.doi.org/10.1038/35042675
-
Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000;408:307-10; PMID:11099028; http://dx.doi.org/10.1038/35042675.
-
(2000)
Nature
, vol.408
, pp. 307-310
-
-
Vogelstein, B.1
Lane, D.2
Levine, A.J.3
-
9
-
-
77952238224
-
P53-family proteins and their regulators: Hubs and spokes in tumor suppression
-
PMID:20379196; http://dx.doi.org/10.1038/cdd.2010.35
-
Collavin L, Lunardi A, Del Sal G. p53-family proteins and their regulators: hubs and spokes in tumor suppression. Cell Death Differ 2010;17:901-11; PMID:20379196; http://dx.doi.org/10.1038/cdd.2010.35.
-
(2010)
Cell Death Differ
, vol.17
, pp. 901-911
-
-
Collavin, L.1
Lunardi, A.2
Del Sal, G.3
-
10
-
-
80052045437
-
A microRNA-dependent circuit controlling p63/p73 homeostasis: P53 family crosstalk meets therapeutic opportunity
-
PMID:21436470
-
Ory B, Ellisen LW. A microRNA-dependent circuit controlling p63/p73 homeostasis: p53 family crosstalk meets therapeutic opportunity. Oncotarget 2011;2:259-64; PMID:21436470.
-
(2011)
Oncotarget
, vol.2
, pp. 259-264
-
-
Ory, B.1
Ellisen, L.W.2
-
11
-
-
79957464247
-
Direct interaction between p53 and Tid1 proteins affects p53 mitochon-drial localization and apoptosis
-
PMID:21311096
-
Trinh DL, Elwi AN, Kim S W. Direct interaction between p53 and Tid1 proteins affects p53 mitochon-drial localization and apoptosis. Oncotarget 2010;1:396-404; PMID:21311096.
-
(2010)
Oncotarget
, vol.1
, pp. 396-404
-
-
Trinh, D.L.1
Elwi, A.N.2
Kim, S.W.3
-
12
-
-
77952192188
-
P53 regulation of metabolic pathways
-
PMID:20452943; http://dx.doi.org/10.1101/cshperspect.a001040
-
Gottlieb E, Vousden KH. p53 regulation of metabolic pathways. Cold Spring Harb Perspect Biol 2010;2:a001040; PMID:20452943; http://dx.doi.org/10.1101/ cshperspect.a001040.
-
(2010)
Cold Spring Harb Perspect Biol
, vol.2
-
-
Gottlieb, E.1
Vousden, K.H.2
-
13
-
-
84862977182
-
Regulation of glucose metabolism by p53: Emerging new roles for the tumor suppressor
-
PMID:22248668
-
Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy P, Mahdi AA. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget 2011;2:948-57; PMID:22248668.
-
(2011)
Oncotarget
, vol.2
, pp. 948-957
-
-
Madan, E.1
Gogna, R.2
Bhatt, M.3
Pati, U.4
Kuppusamy, P.5
Mahdi, A.A.6
-
14
-
-
33745918951
-
TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis
-
DOI 10.1016/j.cell.2006.05.036, PII S0092867406007628
-
Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R, et al. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 2006;126:107-20; PMID:16839880; http://dx.doi.org/10.1016/j. cell.2006.05.036. (Pubitemid 44040989)
-
(2006)
Cell
, vol.126
, Issue.1
, pp. 107-120
-
-
Bensaad, K.1
Tsuruta, A.2
Selak, M.A.3
Vidal, M.N.C.4
Nakano, K.5
Bartrons, R.6
Gottlieb, E.7
Vousden, K.H.8
-
15
-
-
0032975551
-
P53 Is a transcriptional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression
-
Ruiz-Lozano P, Hixon ML, Wagner MW, Flores AI, Ikawa S, Baldwin AS Jr., et al. p53 is a transcrip-tional activator of the muscle-specific phosphoglycerate mutase gene and contributes in vivo to the control of its cardiac expression. Cell Growth Differ 1999;10:295-306; PMID:10359011. (Pubitemid 29242596)
-
(1999)
Cell Growth and Differentiation
, vol.10
, Issue.5
, pp. 295-306
-
-
Ruiz-Lozano, P.1
Hixon, M.L.2
Wagner, M.W.3
Flores, A.I.4
Ikawa, S.5
Baldwin Jr., A.S.6
Chien, K.R.7
Gualberto, A.8
-
16
-
-
77952212178
-
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
-
PMID:20378837; http://dx.doi.org/10.1073/pnas.1001006107
-
Hu W, Zhang C, Wu R, Sun Y, Levine A, Feng Z. Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc Natl Acad Sci USA 2010;107:7455-60; PMID:20378837; http://dx.doi.org/10.1073/pnas. 1001006107.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 7455-7460
-
-
Hu, W.1
Zhang, C.2
Wu, R.3
Sun, Y.4
Levine, A.5
Feng, Z.6
-
17
-
-
79957991472
-
Glutaminase: A hot spot for regulation of cancer cell metabolism?
-
PMID:21234284
-
Erickson J W, Cerione RA. Glutaminase: a hot spot for regulation of cancer cell metabolism? Oncotarget 2010;1:734-40; PMID:21234284.
-
(2010)
Oncotarget
, vol.1
, pp. 734-740
-
-
Erickson, J.W.1
Cerione, R.A.2
-
18
-
-
0035866378
-
Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53
-
Li JN, Gorospe M, Chrest FJ, Kumaravel TS, Evans MK, Han W F, et al. Pharmacological inhibition of fatty acid synthase activity produces both cytostatic and cytotoxic effects modulated by p53. Cancer Res 2001;61:1493-9; PMID:11245456. (Pubitemid 34292578)
-
(2001)
Cancer Research
, vol.61
, Issue.4
, pp. 1493-1499
-
-
Li, J.-N.1
Gorospe, M.2
Chrest, F.J.3
Kumaravel, T.S.4
Evans, M.K.5
Han, W.F.6
Pizer, E.S.7
-
19
-
-
20544449673
-
The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation
-
DOI 10.1038/sj.onc.1208622
-
Buzzai M, Bauer DE, Jones RG, Deberardinis RJ, Hatzivassiliou G, Elstrom RL, et al. The glucose dependence of Akt-transformed cells can be reversed by pharmacologic activation of fatty acid β-oxidation. Oncogene 2005;24:4165-73; PMID:15806154; http://dx.doi.org/10.1038/sj.onc.1208622. (Pubitemid 40961771)
-
(2005)
Oncogene
, vol.24
, Issue.26
, pp. 4165-4173
-
-
Buzzai, M.1
Bauer, D.E.2
Jones, R.G.3
DeBerardinis, R.J.4
Hatzivassiliou, G.5
Elstrom, R.L.6
Thompson, C.B.7
-
20
-
-
33749574062
-
Prion protein helix1 promotes aggregation but is not converted into β-sheet
-
DOI 10.1074/jbc.
-
Deberardinis RJ, Lum JJ, Thompson CB. Phosphatidylinositol 3-kinase-dependent modulation of carnitine palmitoyltransferase 1A expression regulates lipid metabolism during hematopoietic cell growth. J Biol Chem 2006;281:37372-80; PMID:17030509; http://dx.doi.org/10.1074/jbc. M608372200. (Pubitemid 44537031)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.40
, pp. 30242-30250
-
-
Watzlawik, J.1
Skora, L.2
Frense, D.3
Griesinger, C.4
Zweckstetter, M.5
Schulz-Schaeffer, W.J.6
Kramer, M.L.7
-
21
-
-
0034738967
-
A ribonucleotide reductase gene is a transcriptional target of p53 and p73
-
PMID:10980602; http://dx.doi.org/10.1038/sj.onc.1203774
-
Nakano K, Bálint E, Ashcroft M, Vousden KH. A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene 2000;19:4283-9; PMID:10980602; http://dx.doi.org/10.1038/sj.onc.1203774.
-
(2000)
Oncogene
, vol.19
, pp. 4283-4289
-
-
Nakano, K.1
Bálint, E.2
Ashcroft, M.3
Vousden, K.H.4
-
22
-
-
0030882879
-
Glucose catabolism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53
-
DOI 10.1074/jbc.272.36.22776
-
Mathupala S P, Heese C, Pedersen PL. Glucose catabo-lism in cancer cells. The type II hexokinase promoter contains functionally active response elements for the tumor suppressor p53. J Biol Chem 1997;272:22776-80; PMID:9278438; http://dx.doi.org/10.1074/jbc.272.36.22776. (Pubitemid 27386097)
-
(1997)
Journal of Biological Chemistry
, vol.272
, Issue.36
, pp. 22776-22780
-
-
Mathupala, S.P.1
Heese, C.2
Pedersen, P.L.3
-
23
-
-
67349272249
-
A nucleocy-toplasmic malate dehydrogenase regulates p53 tran-scriptional activity in response to metabolic stress
-
PMID:19229245; http://dx.doi.org/10.1038/cdd.2009.5
-
Lee SM, Kim JH, Cho EJ, Youn HD. A nucleocy-toplasmic malate dehydrogenase regulates p53 tran-scriptional activity in response to metabolic stress. Cell Death Differ 2009;16:738-48; PMID:19229245; http://dx.doi.org/10. 1038/cdd.2009.5.
-
(2009)
Cell Death Differ
, vol.16
, pp. 738-748
-
-
Lee, S.M.1
Kim, J.H.2
Cho, E.J.3
Youn, H.D.4
-
24
-
-
77952227625
-
Phosphate-activated gluta-minase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
-
PMID:20351271; http://dx.doi.org/10.1073/pnas.1002459107
-
Suzuki S, Tanaka T, Poyurovsky MV, Nagano H, Mayama T, Ohkubo S, et al. Phosphate-activated gluta-minase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc Natl Acad Sci USA 2010;107:7461-6; PMID:20351271; http://dx.doi.org/10.1073/pnas.1002459107.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 7461-7466
-
-
Suzuki, S.1
Tanaka, T.2
Poyurovsky, M.V.3
Nagano, H.4
Mayama, T.5
Ohkubo, S.6
-
25
-
-
77955652375
-
Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway
-
PMID:20566882; http://dx.doi.org/10.1073/pnas.0910885107
-
Khutornenko AA, Roudko VV, Chernyak BV, Vartapetian AB, Chumakov PM, Evstafieva AG. Pyrimidine biosynthesis links mitochondrial respiration to the p53 pathway. Proc Natl Acad Sci USA 2010;107:12828-33; PMID:20566882; http://dx.doi.org/10.1073/pnas.0910885107.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 12828-12833
-
-
Khutornenko, A.A.1
Roudko, V.V.2
Chernyak, B.V.3
Vartapetian, A.B.4
Chumakov, P.M.5
Evstafieva, A.G.6
-
26
-
-
77957009531
-
ApoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53
-
PMID:20890106; http://dx.doi.org/10.4161/cc.9.18.12993
-
Ashur-Fabian O, Har-Zahav A, Shaish A, Wiener Amram H, Margalit O, Weizer-Stern O, et al. apoB and apobec1, two genes key to lipid metabolism, are transcriptionally regulated by p53. Cell Cycle 2010;9:3761-70; PMID:20890106; http://dx.doi.org/10.4161/cc.9.18.12993.
-
(2010)
Cell Cycle
, vol.9
, pp. 3761-3770
-
-
Ashur-Fabian, O.1
Har-Zahav, A.2
Shaish, A.3
Wiener Amram, H.4
Margalit, O.5
Weizer-Stern, O.6
-
27
-
-
77953587752
-
GAMT joins the p53 network: Branching into metabolism
-
PMID:20404548; http://dx.doi.org/10.4161/cc.9.9.11473
-
Ide T, Chu K, Aaronson SA, Lee SW. GAMT joins the p53 network: branching into metabolism. Cell Cycle 2010;9:1706-10; PMID:20404548; http://dx.doi.org/10. 4161/cc.9.9.11473.
-
(2010)
Cell Cycle
, vol.9
, pp. 1706-1710
-
-
Ide, T.1
Chu, K.2
Aaronson, S.A.3
Lee, S.W.4
-
28
-
-
79953855431
-
ATM is a redox sensor linking genome stability and carbon metabolism
-
PMID:21467295; http://dx.doi.org/10.1126/scisignal.2001959
-
Krüger A, Ralser M. ATM is a redox sensor linking genome stability and carbon metabolism. Sci Signal 2011;4:pe17; PMID:21467295; http://dx.doi.org/10.1126/scisignal.2001959.
-
(2011)
Sci Signal
, vol.4
-
-
Krüger, A.1
Ralser, M.2
-
29
-
-
84857372561
-
P53, a novel regulator of lipid metabolism pathways
-
PMID:22037227; http://dx.doi.org/10.1016/j. jhep. 2011.08.022
-
Goldstein I, Ezra O, Rivlin N, Molchadsky A, Madar S, Goldfinger N, et al. p53, a novel regulator of lipid metabolism pathways. J Hepatol 2012;56:656-62; PMID:22037227; http://dx.doi.org/10.1016/j. jhep. 2011.08.022.
-
(2012)
J Hepatol
, vol.56
, pp. 656-662
-
-
Goldstein, I.1
Ezra, O.2
Rivlin, N.3
Molchadsky, A.4
Madar, S.5
Goldfinger, N.6
-
30
-
-
79952280229
-
P53 regulates biosynthesis through direct inactiva-tion of glucose-6-phosphate dehydrogenase
-
PMID:21336310; http://dx.doi.org/10.1038/ncb2172
-
Jiang P, Du W, Wang X, Mancuso A, Gao X, Wu M, et al. p53 regulates biosynthesis through direct inactiva-tion of glucose-6-phosphate dehydrogenase. Nat Cell Biol 2011;13:310-6; PMID:21336310; http://dx.doi.org/10.1038/ncb2172.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 310-316
-
-
Jiang, P.1
Du, W.2
Wang, X.3
Mancuso, A.4
Gao, X.5
Wu, M.6
-
31
-
-
20444363122
-
The coordinate regulation of the p53 and mTOR pathways in cells
-
DOI 10.1073/pnas.0502857102
-
Feng Z, Zhang H, Levine AJ, Jin S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc Natl Acad Sci USA 2005;102:8204-9; PMID:15928081; http://dx.doi.org/10.1073/pnas.0502857102. (Pubitemid 40800067)
-
(2005)
Proceedings of the National Academy of Sciences of the United States of America
, vol.102
, Issue.23
, pp. 8204-8209
-
-
Feng, Z.1
Zhang, H.2
Levine, A.J.3
Jin, S.4
-
32
-
-
42949152052
-
Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress
-
PMID:18056705; http://dx.doi.org/10.1074/jbc. M705232200
-
Okoshi R, Ozaki T, Yamamoto H, Ando K, Koida N, Ono S, et al. Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress. J Biol Chem 2008;283:3979-87; PMID:18056705; http://dx.doi.org/10.1074/jbc. M705232200.
-
(2008)
J Biol Chem
, vol.283
, pp. 3979-3987
-
-
Okoshi, R.1
Ozaki, T.2
Yamamoto, H.3
Ando, K.4
Koida, N.5
Ono, S.6
-
33
-
-
79955751752
-
Metabolic regulation by p53
-
PMID:21340684; http://dx.doi.org/10.1007/s00109-011-0735-5
-
Maddocks OD, Vousden KH, Vousden KH. Metabolic regulation by p53. J Mol Med (Berl) 2011;89:237-45; PMID:21340684; http://dx.doi.org/10.1007/s00109-011- 0735-5.
-
(2011)
J Mol Med (Berl)
, vol.89
, pp. 237-245
-
-
Maddocks, O.D.1
Vousden, K.H.2
Vousden, K.H.3
-
34
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
PMID:19460998; http://dx.doi.org/10.1126/science.1160809
-
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009;324:1029-33; PMID:19460998; http://dx.doi.org/10.1126/science.1160809.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
Cantley, L.C.2
Thompson, C.B.3
-
35
-
-
84862977182
-
Regulation of glucose metabolism by p53: Emerging new roles for the tumor suppressor
-
PMID:22248668
-
Madan E, Gogna R, Bhatt M, Pati U, Kuppusamy P, Mahdi AA. Regulation of glucose metabolism by p53: emerging new roles for the tumor suppressor. Oncotarget 2011;2:948-57; PMID:22248668.
-
(2011)
Oncotarget
, vol.2
, pp. 948-957
-
-
Madan, E.1
Gogna, R.2
Bhatt, M.3
Pati, U.4
Kuppusamy, P.5
Mahdi, A.A.6
-
36
-
-
79958015593
-
Targeting metabolic remodeling in glioblastoma multiforme
-
PMID:21317451
-
Wolf A, Agnihotri S, Guha A. Targeting metabolic remodeling in glioblastoma multiforme. Oncotarget 2010;1:552-62; PMID:21317451.
-
(2010)
Oncotarget
, vol.1
, pp. 552-562
-
-
Wolf, A.1
Agnihotri, S.2
Guha, A.3
-
37
-
-
67949101910
-
TAp63α induces apop-tosis by activating signaling via death receptors and mitochondria
-
PMID:19615968
-
Schilling T, Schleithoff ES, Kairat A, Melino G, Stremmel W, Oren M, et al. TAp63α induces apop-tosis by activating signaling via death receptors and mitochondria. Biochem Biophys Res Commun 2009;387:399-404; PMID:19615968.
-
(2009)
Biochem Biophys Res Commun
, vol.387
, pp. 399-404
-
-
Schilling, T.1
Schleithoff, E.S.2
Kairat, A.3
Melino, G.4
Stremmel, W.5
Oren, M.6
-
38
-
-
77952743819
-
Dominant negative (DeltaN) p63α induces drug resistance in hepatocellular carcinoma by interference with apoptosis signaling pathways
-
PMID:20403333; http://dx.doi.org/10.1016/j. bbrc.2010.04.093
-
Mundt HM, Stremmel W, Melino G, Krammer PH, Schilling T, Müller M. Dominant negative (DeltaN) p63α induces drug resistance in hepatocellular carcinoma by interference with apoptosis signaling pathways. Biochem Biophys Res Commun 2010;396:335-41; PMID:20403333; http://dx.doi.org/10.1016/j. bbrc.2010.04.093.
-
(2010)
Biochem Biophys Res Commun
, vol.396
, pp. 335-341
-
-
Mundt, H.M.1
Stremmel, W.2
Melino, G.3
Krammer, P.H.4
Schilling, T.5
Müller, M.6
-
39
-
-
51849085683
-
ATM kinase is a master switch for the δ Np63 α phosphorylation/degradation in human head and neck squamous cell carcinoma cells upon DNA damage
-
PMID:18769144; http://dx.doi.org/10.4161/cc.7.18.6627
-
Huang Y, Sen T, Nagpal J, Upadhyay S, Trink B, Ratovitski E, et al. ATM kinase is a master switch for the δ Np63 α phosphorylation/ degradation in human head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle 2008;7:2846-55; PMID:18769144; http://dx.doi.org/10.4161/cc. 7.18.6627.
-
(2008)
Cell Cycle
, vol.7
, pp. 2846-2855
-
-
Huang, Y.1
Sen, T.2
Nagpal, J.3
Upadhyay, S.4
Trink, B.5
Ratovitski, E.6
-
40
-
-
74949113519
-
Phospho-δNp63α/NF-Y protein complex transcriptionally regulates DDIT3 expression in squamous cell carcinoma cells upon cisplatin exposure
-
http://dx.doi.org/10.4161/cc.9.2.10432
-
Huang Y, Chuang AY, Romano RA, Liegeois NJ, Sinha S, Trink B, et al. Phospho-δNp63α/NF-Y protein complex transcriptionally regulates DDIT3 expression in squamous cell carcinoma cells upon cisplatin exposure. Cell Cycle 2010;9:332-42; http://dx.doi.org/10.4161/cc.9.2.10432.
-
(2010)
Cell Cycle
, vol.9
, pp. 332-342
-
-
Huang, Y.1
Chuang, A.Y.2
Romano, R.A.3
Liegeois, N.J.4
Sinha, S.5
Trink, B.6
-
41
-
-
79952271270
-
Phospho-δNp63α/Rpn13-dependent regulation of LKB1 degradation modulates autophagy in cancer cells
-
PMID:21191146
-
Huang Y, Ratovitski EA. Phospho-δNp63α/Rpn13-dependent regulation of LKB1 degradation modulates autophagy in cancer cells. Aging (Albany NY) 2010;2:959-68; PMID:21191146.
-
(2010)
Aging (Albany NY)
, vol.2
, pp. 959-968
-
-
Huang, Y.1
Ratovitski, E.A.2
-
42
-
-
79958831395
-
Phospho-δNp63α is a key regulator of the cisplatin-induced microRNAome in cancer cells
-
PMID:21274007; http://dx.doi.org/10.1038/cdd.2010.188
-
Huang Y, Chuang A, Hao H, Talbot C, Sen T, Trink B, et al. Phospho-δNp63α is a key regulator of the cisplatin-induced microRNAome in cancer cells. Cell Death Differ 2011;18:1220-30; PMID:21274007; http://dx.doi.org/10.1038/cdd.2010.188.
-
(2011)
Cell Death Differ
, vol.18
, pp. 1220-1230
-
-
Huang, Y.1
Chuang, A.2
Hao, H.3
Talbot, C.4
Sen, T.5
Trink, B.6
-
43
-
-
81855227722
-
Phospho-δNp63α/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure
-
PMID:22071691; http://dx.doi.org/10.4161/cc.10.22.18107
-
Huang Y, Chuang AY, Ratovitski EA. Phospho-δNp63α/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure. Cell Cycle 2011;10:3938-47; PMID:22071691; http://dx.doi.org/10.4161/cc.10.22.18107.
-
(2011)
Cell Cycle
, vol.10
, pp. 3938-3947
-
-
Huang, Y.1
Chuang, A.Y.2
Ratovitski, E.A.3
-
44
-
-
84863344601
-
Phospho-δNp63α-dependent regulation of autophagic signaling through transcription and micro-RNA modulation
-
PMID:22356768; http://dx.doi.org/10.4161/cc.11.6.19670
-
Huang Y, Guerrero-Preston R, Ratovitski EA. Phospho-δNp63α- dependent regulation of autophagic signaling through transcription and micro-RNA modulation. Cell Cycle 2012;11:1247-59; PMID:22356768; http://dx.doi.org/10. 4161/cc.11.6.19670.
-
(2012)
Cell Cycle
, vol.11
, pp. 1247-1259
-
-
Huang, Y.1
Guerrero-Preston, R.2
Ratovitski, E.A.3
-
45
-
-
80052592013
-
Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids
-
PMID:21907927; http://dx.doi.org/10.1016/j.ccr.2011.08.010
-
Roodhart JM, Daenen LG, Stigter EC, Prins HJ, Gerrits J, Houthuijzen JM, et al. Mesenchymal stem cells induce resistance to chemotherapy through the release of platinum-induced fatty acids. Cancer Cell 2011;20:370-83; PMID:21907927; http://dx.doi.org/10.1016/j.ccr.2011.08.010.
-
(2011)
Cancer Cell
, vol.20
, pp. 370-383
-
-
Roodhart, J.M.1
Daenen, L.G.2
Stigter, E.C.3
Prins, H.J.4
Gerrits, J.5
Houthuijzen, J.M.6
-
46
-
-
77955483125
-
Activation of a metabolic gene regulatory network downstream of mTOR complex 1
-
PMID:20670887; http://dx.doi.org/10.1016/j.molcel.2010.06.022
-
Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell 2010;39:171-83; PMID:20670887; http://dx.doi.org/10.1016/j.molcel.2010. 06.022.
-
(2010)
Mol Cell
, vol.39
, pp. 171-183
-
-
Düvel, K.1
Yecies, J.L.2
Menon, S.3
Raman, P.4
Lipovsky, A.I.5
Souza, A.L.6
-
47
-
-
84859459231
-
Coordination of the transcrip-tome and metabolome by the circadian clock
-
PMID:22431615; http://dx.doi.org/10.1073/pnas.1118726109
-
Eckel-Mahan KL, Patel VR, Mohney R P, Vignola KS, Baldi P, Sassone-Corsi P. Coordination of the transcrip-tome and metabolome by the circadian clock. Proc Natl Acad Sci USA 2012;109:5541-6; PMID:22431615; http://dx.doi.org/10. 1073/pnas.1118726109.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 5541-5546
-
-
Eckel-Mahan, K.L.1
Patel, V.R.2
Mohney, R.P.3
Vignola, K.S.4
Baldi, P.5
Sassone-Corsi, P.6
-
48
-
-
84860319965
-
Oncogene-induced senescence results in marked metabolic and bioenergetic alterations
-
PMID:22421146; http://dx.doi.org/10.4161/cc.19800
-
Quijano C, Cao L, Fergusson MM, Romero H, Liu J, Gutkind S, et al. Oncogene-induced senescence results in marked metabolic and bioenergetic alterations. Cell Cycle 2012;11:1383-92; PMID:22421146; http://dx.doi.org/10. 4161/cc.19800.
-
(2012)
Cell Cycle
, vol.11
, pp. 1383-1392
-
-
Quijano, C.1
Cao, L.2
Fergusson, M.M.3
Romero, H.4
Liu, J.5
Gutkind, S.6
-
49
-
-
77950801864
-
Identification of hypermethylated genes associated with cisplatin resistance in human cancers
-
PMID:20215521; http://dx.doi.org/10.1158/0008-5472. CAN-09-3427
-
Chang X, Monitto CL, Demokan S, Kim MS, Chang SS, Zhong X, et al. Identification of hypermethylated genes associated with cisplatin resistance in human cancers. Cancer Res 2010;70:2870-9; PMID:20215521; http://dx.doi.org/10. 1158/0008-5472. CAN-09-3427.
-
(2010)
Cancer Res
, vol.70
, pp. 2870-2879
-
-
Chang, X.1
Monitto, C.L.2
Demokan, S.3
Kim, M.S.4
Chang, S.S.5
Zhong, X.6
-
50
-
-
84860319366
-
Methylation of death-associated protein kinase is associated with cetuximab and erlotinib resistance
-
PMID:22487682; http://dx.doi.org/10.4161/cc.20120
-
Ogawa T, Liggett TE, Melnikov AA, Monitto CL, Kusuke D, Shiga K, et al. Methylation of death-associated protein kinase is associated with cetuximab and erlotinib resistance. Cell Cycle 2012;11:1656-63; PMID:22487682; http://dx.doi.org/10.4161/cc.20120.
-
(2012)
Cell Cycle
, vol.11
, pp. 1656-1663
-
-
Ogawa, T.1
Liggett, T.E.2
Melnikov, A.A.3
Monitto, C.L.4
Kusuke, D.5
Shiga, K.6
-
51
-
-
78650637919
-
Phosphorylated TP63 induces transcription of RPN13, leading to NOS2 protein degradation
-
PMID:20959455; http://dx.doi.org/10.1074/jbc. M110.158642
-
Huang Y, Ratovitski EA. Phosphorylated TP63 induces transcription of RPN13, leading to NOS2 protein degradation. J Biol Chem 2010;285:41422-31; PMID:20959455; http://dx.doi.org/10.1074/jbc. M110.158642.
-
(2010)
J Biol Chem
, vol.285
, pp. 41422-41431
-
-
Huang, Y.1
Ratovitski, E.A.2
-
52
-
-
79551524391
-
DeltaNp63α confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation
-
PMID:21266360; http://dx.doi.org/10.1158/0008-5472. CAN-10-1481
-
Sen T, Sen N, Brait M, Begum S, Chatterjee A, Hoque MO, et al. DeltaNp63α confers tumor cell resistance to cisplatin through the AKT1 transcriptional regulation. Cancer Res 2011;71:1167-76; PMID:21266360; http://dx.doi.org/10.1158/0008-5472. CAN-10-1481.
-
(2011)
Cancer Res
, vol.71
, pp. 1167-1176
-
-
Sen, T.1
Sen, N.2
Brait, M.3
Begum, S.4
Chatterjee, A.5
Hoque, M.O.6
-
53
-
-
84863786613
-
Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63
-
PMID:22361592
-
Martynova E, Pozzi S, Basile V, Dolfini D, Zambelli F, Imbriano C, et al. Gain-of-function p53 mutants have widespread genomic locations partially overlapping with p63. Oncotarget 2012;3:132-43; PMID:22361592.
-
(2012)
Oncotarget
, vol.3
, pp. 132-143
-
-
Martynova, E.1
Pozzi, S.2
Basile, V.3
Dolfini, D.4
Zambelli, F.5
Imbriano, C.6
-
54
-
-
84860334111
-
A combination of a ribonucleotide reductase inhibitor and histone deacet-ylase inhibitors downregulates EGFR and triggers BIM-dependent apoptosis in head and neck cancer
-
PMID:22289787
-
Stauber RH, Knauer SK, Habtemichael N, Bier C, Unruhe B, Weisheit S, et al. A combination of a ribonucleotide reductase inhibitor and histone deacet-ylase inhibitors downregulates EGFR and triggers BIM-dependent apoptosis in head and neck cancer. Oncotarget 2012;3:31-43; PMID:22289787.
-
(2012)
Oncotarget
, vol.3
, pp. 31-43
-
-
Stauber, R.H.1
Knauer, S.K.2
Habtemichael, N.3
Bier, C.4
Unruhe, B.5
Weisheit, S.6
-
55
-
-
0035667902
-
Apoptosis-induced release of mature sterol regulatory element-binding proteins activates sterol-responsive genes
-
Higgins ME, Ioannou YA. Apoptosis-induced release of mature sterol regulatory element-binding proteins activates sterol-responsive genes. J Lipid Res 2001;42:1939-46; PMID:11734566. (Pubitemid 34001042)
-
(2001)
Journal of Lipid Research
, vol.42
, Issue.12
, pp. 1939-1946
-
-
Higgins, M.E.1
Ioannou, Y.A.2
-
56
-
-
0038142184
-
Differential regulation of E2F1 apoptotic target genes in response to DNA damage
-
DOI 10.1038/ncb998
-
Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L, et al. Differential regulation of E2F1 apop-totic target genes in response to DNA damage. Nat Cell Biol 2003;5:552-8; PMID:12766778; http://dx.doi.org/10.1038/ ncb998. (Pubitemid 36781090)
-
(2003)
Nature Cell Biology
, vol.5
, Issue.6
, pp. 552-558
-
-
Pediconi, N.1
Ianari, A.2
Costanzo, A.3
Belloni, L.4
Gallo, R.5
Cimino, L.6
Porcellini, A.7
Screpanti, I.8
Balsano, C.9
Alesse, E.10
Gulino, A.11
Levrero, M.12
-
57
-
-
42449114966
-
Transcriptional control of human p53-regulated genes
-
DOI 10.1038/nrm2395, PII NRM2395
-
Riley T, Sontag E, Chen P, Levine A. Transcriptional control of human p53-regulated genes. Nat Rev Mol Cell Biol 2008;9:402-12; PMID:18431400; http://dx.doi.org/10.1038/nrm2395. (Pubitemid 351574202)
-
(2008)
Nature Reviews Molecular Cell Biology
, vol.9
, Issue.5
, pp. 402-412
-
-
Riley, T.1
Sontag, E.2
Chen, P.3
Levine, A.4
-
58
-
-
84860324529
-
Inhibitory role of E2F-1 in the regulation of tumor suppressor p53 during DNA damage response
-
PMID:22480684; http://dx.doi.org/10.1016/j. bbrc.2012.03.108
-
Yoshihara Y, Wu D, Kubo N, Sang M, Nakagawara A, Ozaki T. Inhibitory role of E2F-1 in the regulation of tumor suppressor p53 during DNA damage response. Biochem Biophys Res Commun 2012;421:57-63; PMID:22480684; http://dx.doi.org/10. 1016/j. bbrc.2012.03.108.
-
(2012)
Biochem Biophys Res Commun
, vol.421
, pp. 57-63
-
-
Yoshihara, Y.1
Wu, D.2
Kubo, N.3
Sang, M.4
Nakagawara, A.5
Ozaki, T.6
-
59
-
-
84862845005
-
Global tumor protein p53/p63 interactome: Making a case for cisplatin chemoresis-tance
-
PMID:22672905; http://dx.doi.org/10.4161/cc.20863
-
Huang Y, Jeong JS, Okamura J, Sook-Kim M, Zhu H, Guerrero-Preston R, et al. Global tumor protein p53/p63 interactome: making a case for cisplatin chemoresis-tance. Cell Cycle 2012;11:2367-79; PMID:22672905; http://dx.doi.org/10.4161/cc.20863.
-
(2012)
Cell Cycle
, vol.11
, pp. 2367-2379
-
-
Huang, Y.1
Jeong, J.S.2
Okamura, J.3
Sook-Kim, M.4
Zhu, H.5
Guerrero-Preston, R.6
-
60
-
-
0032803798
-
Palmitate induces apoptosis via a direct effect on mitochondria
-
DOI 10.1023/A:1009694124241
-
de Pablo MA, Susin SA, Jacotot E, Larochette N, Costantini P, Ravagnan L, et al. Palmitate induces apoptosis via a direct effect on mitochondria. Apoptosis 1999;4:81-7; PMID:14634285; http://dx.doi.org/10.1023/A:1009694124241. (Pubitemid 29378791)
-
(1999)
Apoptosis
, vol.4
, Issue.2
, pp. 81-87
-
-
De Pablo, M.A.1
Susin, S.A.2
Jacotot, E.3
Larochette, N.4
Costantini, P.5
Ravagnan, L.6
Zamzami, N.7
Kroemer, G.8
-
61
-
-
80051970600
-
Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival
-
PMID:21854985; http://dx.doi.org/10.1016/j.cell.2011.06.050
-
Yi CH, Pan H, Seebacher J, Jang IH, Hyberts SG, Heffron GJ, et al. Metabolic regulation of protein N-alpha-acetylation by Bcl-xL promotes cell survival. Cell 2011;146:607-20; PMID:21854985; http://dx.doi.org/10.1016/j.cell. 2011.06.050.
-
(2011)
Cell
, vol.146
, pp. 607-620
-
-
Yi, C.H.1
Pan, H.2
Seebacher, J.3
Jang, I.H.4
Hyberts, S.G.5
Heffron, G.J.6
-
62
-
-
77955102628
-
Metabolic approach to the enhancement of antitumor effect of chemotherapy: A key role of acetyl-L-carnitine
-
PMID:20562210; http://dx.doi.org/10.1158/1078-0432. CCR-10-0964
-
Pisano C, Vesci L, Milazzo FM, Guglielmi MB, Foderà R, Barbarino M, et al. Metabolic approach to the enhancement of antitumor effect of chemotherapy: a key role of acetyl-L-carnitine. Clin Cancer Res 2010;16:3944-53; PMID:20562210; http://dx.doi.org/10.1158/1078-0432. CCR-10-0964.
-
(2010)
Clin Cancer Res
, vol.16
, pp. 3944-3953
-
-
Pisano, C.1
Vesci, L.2
Milazzo, F.M.3
Guglielmi, M.B.4
Foderà, R.5
Barbarino, M.6
-
63
-
-
41649094480
-
Carnitine palmitoyltransferase I in human carcinomas: A novel role in histone deacetylation?
-
Mazzarelli P, Pucci S, Bonanno E, Sesti F, Calvani M, Spagnoli LG. Carnitine palmitoyltransferase I in human carcinomas: a novel role in histone deacetylation? Cancer Biol Ther 2007;6:1606-13; PMID:18253084; http://dx.doi.org/10.4161/cbt.6.10.4742. (Pubitemid 351590333)
-
(2007)
Cancer Biology and Therapy
, vol.6
, Issue.10
, pp. 1606-1613
-
-
Mazzarelli, P.1
Pucci, S.2
Bonanno, E.3
Sesti, F.4
Calvani, M.5
Spagnoli, L.G.6
-
64
-
-
0034700139
-
Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines
-
PMID:11069295; http://dx.doi.org/10.1073/pnas.230445997
-
Maxwell SA, Davis GE. Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines. Proc Natl Acad Sci USA 2000;97:13009-14; PMID:11069295; http://dx.doi.org/10.1073/pnas.230445997.
-
(2000)
Proc Natl Acad Sci USA
, vol.97
, pp. 13009-13014
-
-
Maxwell, S.A.1
Davis, G.E.2
-
65
-
-
79954775922
-
Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes
-
PMID:21152246
-
Kuo M T, Savaraj N, Feun LG. Targeted cellular metabolism for cancer chemotherapy with recombinant arginine-degrading enzymes. Oncotarget 2010;1:246-51; PMID:21152246.
-
(2010)
Oncotarget
, vol.1
, pp. 246-251
-
-
Kuo, M.T.1
Savaraj, N.2
Feun, L.G.3
-
66
-
-
0034016574
-
Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition
-
Patterson SD, Spahr CS, Daugas E, Susin SA, Irinopoulou T, Koehler C, et al. Mass spectrometric identification of proteins released from mitochondria undergoing permeability transition. Cell Death Differ 2000;7:137-44; PMID:10713728; http://dx.doi.org/10.1038/sj.cdd.4400640. (Pubitemid 30150781)
-
(2000)
Cell Death and Differentiation
, vol.7
, Issue.2
, pp. 137-144
-
-
Patterson, S.D.1
Spahr, C.S.2
Daugas, E.3
Susin, S.A.4
Irinopoulou, T.5
Koehler, C.6
Kroemer, G.7
-
67
-
-
84862951708
-
In-depth identification of pathways related to cisplatin-induced hepatotoxicity through an integra-tive method based on an informatics-assisted label-free protein quantitation and microarray gene expression approach
-
010884, PMID:22023808; http://dx.doi.org/10.1074/mcp. M111.010884
-
Cho YE, Singh TS, Lee HC, Moon PG, Lee JE, Lee MH, et al. In-depth identification of pathways related to cisplatin-induced hepatotoxicity through an integra-tive method based on an informatics-assisted label-free protein quantitation and microarray gene expression approach. Mol Cell Proteomics 2012;11:M111, 010884; PMID:22023808; http://dx.doi.org/10.1074/mcp. M111.010884.
-
(2012)
Mol Cell Proteomics
, vol.11
-
-
Cho, Y.E.1
Singh, T.S.2
Lee, H.C.3
Moon, P.G.4
Lee, J.E.5
Lee, M.H.6
-
68
-
-
80052708782
-
Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity
-
PMID:21679161; http://dx.doi.org/10.1042/BJ20102016
-
Polimeni M, Voena C, Kopecka J, Riganti C, Pescarmona G, Bosia A, et al. Modulation of doxorubicin resistance by the glucose-6-phosphate dehydrogenase activity. Biochem J 2011;439:141-9; PMID:21679161; http://dx.doi.org/10.1042/ BJ20102016.
-
(2011)
Biochem J
, vol.439
, pp. 141-149
-
-
Polimeni, M.1
Voena, C.2
Kopecka, J.3
Riganti, C.4
Pescarmona, G.5
Bosia, A.6
-
69
-
-
77952316342
-
High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and β-cell apoptosis
-
PMID:20032314; http://dx.doi.org/10.1096/fj.09-136572
-
Zhang Z, Liew CW, Handy DE, Zhang Y, Leopold JA, Hu J, et al. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and β-cell apoptosis. FASEB J 2010;24:1497-505; PMID:20032314; http://dx.doi.org/10.1096/fj.09-136572.
-
(2010)
FASEB J
, vol.24
, pp. 1497-1505
-
-
Zhang, Z.1
Liew, C.W.2
Handy, D.E.3
Zhang, Y.4
Leopold, J.A.5
Hu, J.6
-
70
-
-
4344624553
-
Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis
-
DOI 10.1038/sj.cdd.4401420
-
Fico A, Paglialunga F, Cigliano L, Abrescia P, Verde P, Martini G, et al. Glucose-6-phosphate dehydrogenase plays a crucial role in protection from redox-stress-induced apoptosis. Cell Death Differ 2004;11:823-31; PMID:15044966; http://dx.doi.org/10.1038/sj.cdd.4401420. (Pubitemid 39139742)
-
(2004)
Cell Death and Differentiation
, vol.11
, Issue.8
, pp. 823-831
-
-
Fico, A.1
Paglialunga, F.2
Cigliano, L.3
Abrescia, P.4
Verde, P.5
Martini, G.6
Iaccarino, I.7
Filosa, S.8
-
71
-
-
79551577924
-
Inhibition of fatty acid synthase in melanoma cells activates the intrinsic pathway of apoptosis
-
PMID:20805790; http://dx.doi.org/10.1038/labin-vest.2010.157
-
Zecchin KG, Rossato FA, Raposo HF, Melo DR, Alberici LC, Oliveira HC, et al. Inhibition of fatty acid synthase in melanoma cells activates the intrinsic pathway of apoptosis. Lab Invest 2011;91:232-40; PMID:20805790; http://dx.doi.org/10.1038/labin-vest.2010.157.
-
(2011)
Lab Invest
, vol.91
, pp. 232-240
-
-
Zecchin, K.G.1
Rossato, F.A.2
Raposo, H.F.3
Melo, D.R.4
Alberici, L.C.5
Oliveira, H.C.6
-
72
-
-
33745272512
-
Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells
-
DOI 10.1158/0008-5472.CAN-05-3197
-
Bandyopadhyay S, Zhan R, Wang Y, Pai SK, Hirota S, Hosobe S, et al. Mechanism of apoptosis induced by the inhibition of fatty acid synthase in breast cancer cells. Cancer Res 2006;66:5934-40; PMID:16740734; http://dx.doi.org/10.1158/0008-5472. CAN-05-3197. (Pubitemid 43927149)
-
(2006)
Cancer Research
, vol.66
, Issue.11
, pp. 5934-5940
-
-
Bandyopadhyay, S.1
Zhan, R.2
Wang, Y.3
Pai, S.K.4
Hirota, S.5
Hosobe, S.6
Takano, Y.7
Saito, K.8
Furuta, E.9
Iiizumi, M.10
Mohinta, S.11
Watabe, M.12
Chalfant, C.13
Watabe, K.14
-
73
-
-
39749137454
-
A new mechanism of drug resistance in breast cancer cells: Fatty acid synthase overexpression-mediated palmitate overproduction
-
DOI 10.1158/1535-7163.MCT-07-0445
-
Liu H, Liu Y, Zhang JT. A new mechanism of drug resistance in breast cancer cells: fatty acid synthase overexpression-mediated palmitate overproduction. Mol Cancer Ther 2008;7:263-70; PMID:18281512; http://dx.doi.org/10.1158/1535-7163. MCT-07-0445. (Pubitemid 351302520)
-
(2008)
Molecular Cancer Therapeutics
, vol.7
, Issue.2
, pp. 263-270
-
-
Liu, H.1
Liu, Y.2
Zhang, J.-T.3
-
74
-
-
33645707835
-
The fatty acid synthase gene is a conserved p53 family target from worm to human
-
PMID:16582625; http://dx.doi.org/10.4161/cc.5.7.2622
-
D'Erchia AM, Tullo A, Lefkimmiatis K, Saccone C, Sbisà E. The fatty acid synthase gene is a conserved p53 family target from worm to human. Cell Cycle 2006;5:750-8; PMID:16582625; http://dx.doi.org/10.4161/cc.5.7.2622.
-
(2006)
Cell Cycle
, vol.5
, pp. 750-758
-
-
D'Erchia, A.M.1
Tullo, A.2
Lefkimmiatis, K.3
Saccone, C.4
Sbisà, E.5
-
75
-
-
67650077386
-
P63 promotes cell survival through fatty acid synthase
-
PMID:19517019; http://dx.doi.org/10.1371/journal.pone.0005877
-
Sabbisetti V, Di Napoli A, Seeley A, Amato AM, O'Regan E, Ghebremichael M, et al. p63 promotes cell survival through fatty acid synthase. PLoS ONE 2009;4:e5877; PMID:19517019; http://dx.doi.org/10.1371/journal.pone.0005877.
-
(2009)
PLoS ONE
, vol.4
-
-
Sabbisetti, V.1
Di Napoli, A.2
Seeley, A.3
Amato, A.M.4
O'Regan, E.5
Ghebremichael, M.6
-
76
-
-
84856471735
-
SREBPs: Metabolic integrators in physiology and metabolism
-
PMID:22154484; http://dx.doi.org/10.1016/j.tem.2011.10.004
-
Jeon TI, Osborne T F. SREBPs: metabolic integrators in physiology and metabolism. Trends Endocrinol Metab 2012;23:65-72; PMID:22154484; http://dx.doi.org/10.1016/j.tem.2011.10.004.
-
(2012)
Trends Endocrinol Metab
, vol.23
, pp. 65-72
-
-
Jeon, T.I.1
Osborne, T.F.2
-
77
-
-
79953756678
-
Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy
-
PMID:21459322; http://dx.doi.org/10.1016/j.cmet.2011.03.005
-
Seo YK, Jeon TI, Chong HK, Biesinger J, Xie X, Osborne T F. Genome-wide localization of SREBP-2 in hepatic chromatin predicts a role in autophagy. Cell Metab 2011;13:367-75; PMID:21459322; http://dx.doi.org/10.1016/j.cmet.2011.03. 005.
-
(2011)
Cell Metab
, vol.13
, pp. 367-375
-
-
Seo, Y.K.1
Jeon, T.I.2
Chong, H.K.3
Biesinger, J.4
Xie, X.5
Osborne, T.F.6
-
78
-
-
27144488677
-
Caspase-2, a novel lipid sensor under the control of sterol regulatory element binding protein 2
-
DOI 10.1128/MCB.25.21.9621-9631.2005
-
Logette E, Le Jossic-Corcos C, Masson D, Solier S, Sequeira-Legrand A, Dugail I, et al. Caspase-2, a novel lipid sensor under the control of sterol regulatory element binding protein 2. Mol Cell Biol 2005;25:9621-31; PMID:16227610; http://dx.doi.org/10.1128/MCB.25.21.9621-9631.2005. (Pubitemid 41507860)
-
(2005)
Molecular and Cellular Biology
, vol.25
, Issue.21
, pp. 9621-9631
-
-
Logette, E.1
Le Jossic-Corcos, C.2
Masson, D.3
Solier, S.4
Sequeira-Legrand, A.5
Dugail, I.6
Lemaire-Ewing, S.7
Desoche, L.8
Solary, E.9
Corcos, L.10
-
79
-
-
66949153262
-
Human caspase 7 is positively controlled by SREBP-1 and SREBP-2
-
PMID:19323650; http://dx.doi.org/10.1042/BJ20082057
-
Gibot L, Follet J, Metges J P, Auvray P, Simon B, Corcos L, et al. Human caspase 7 is positively controlled by SREBP-1 and SREBP-2. Biochem J 2009;420:473-83; PMID:19323650; http://dx.doi.org/10.1042/BJ20082057.
-
(2009)
Biochem J
, vol.420
, pp. 473-483
-
-
Gibot, L.1
Follet, J.2
Metges, J.P.3
Auvray, P.4
Simon, B.5
Corcos, L.6
-
80
-
-
84863959263
-
ER stress contributes to renal proximal tubule injury by increasing SREBP-2-mediated lipid accumulation and apoptotic cell death
-
PMID:22573382; http://dx.doi.org/10.1152/ajprenal.00482.2011
-
Lhoták S, Sood S, Brimble E, Carlisle RE, Colgan SM, Mazzetti A, et al. ER stress contributes to renal proximal tubule injury by increasing SREBP-2-mediated lipid accumulation and apoptotic cell death. Am J Physiol Renal Physiol 2012;303:F266-78; PMID:22573382; http://dx.doi.org/10.1152/ajprenal. 00482.2011.
-
(2012)
Am J Physiol Renal Physiol
, vol.303
-
-
Lhoták, S.1
Sood, S.2
Brimble, E.3
Carlisle, R.E.4
Colgan, S.M.5
Mazzetti, A.6
-
81
-
-
79953663708
-
Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells
-
PMID:21483477; http://dx.doi.org/10.1371/journal. pcbi.1001113
-
Cavill R, Kamburov A, Ellis JK, Athersuch TJ, Blagrove MS, Herwig R, et al. Consensus-phenotype integration of transcriptomic and metabolomic data implies a role for metabolism in the chemosensitivity of tumour cells. PLoS Comput Biol 2011;7:e1001113; PMID:21483477; http://dx.doi.org/10.1371/journal. pcbi.1001113.
-
(2011)
PLoS Comput Biol
, vol.7
-
-
Cavill, R.1
Kamburov, A.2
Ellis, J.K.3
Athersuch, T.J.4
Blagrove, M.S.5
Herwig, R.6
-
82
-
-
80053539605
-
NF-κB controls energy homeosta-sis and metabolic adaptation by upregulating mito-chondrial respiration
-
PMID:21968997; http://dx.doi.org/10.1038/ncb2324
-
Mauro C, Leow SC, Anso E, Rocha S, Thotakura AK, Tornatore L, et al. NF-κB controls energy homeosta-sis and metabolic adaptation by upregulating mito-chondrial respiration. Nat Cell Biol 2011;13:1272-9; PMID:21968997; http://dx.doi.org/10.1038/ncb2324.
-
(2011)
Nat Cell Biol
, vol.13
, pp. 1272-1279
-
-
Mauro, C.1
Leow, S.C.2
Anso, E.3
Rocha, S.4
Thotakura, A.K.5
Tornatore, L.6
-
83
-
-
82355164170
-
Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: Targeting Warburg effect to fight cancer
-
PMID:21862591; http://dx.doi.org/10.1074/jbc. M111.240812
-
Zawacka-Pankau J, Grinkevich V V, Hünten S, Nikulenkov F, Gluch A, Li H, et al. Inhibition of glycolytic enzymes mediated by pharmacologically activated p53: targeting Warburg effect to fight cancer. J Biol Chem 2011;286:41600-15; PMID:21862591; http://dx.doi.org/10.1074/jbc. M111.240812.
-
(2011)
J Biol Chem
, vol.286
, pp. 41600-41615
-
-
Zawacka-Pankau, J.1
Grinkevich, V.V.2
Hünten, S.3
Nikulenkov, F.4
Gluch, A.5
Li, H.6
-
84
-
-
84859870939
-
Recent developments in targeting carbonic anhydrase IX for cancer therapeutics
-
PMID:22289741
-
McDonald PC, Winum JY, Supuran CT, Dedhar S. Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 2012;3:84-97; PMID:22289741.
-
(2012)
Oncotarget
, vol.3
, pp. 84-97
-
-
McDonald, P.C.1
Winum, J.Y.2
Supuran, C.T.3
Dedhar, S.4
-
85
-
-
68849083050
-
Integrated, nontargeted ultrahigh performance liquid chromatography/ electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems
-
PMID:19624122; http://dx.doi.org/10.1021/ac901536h
-
Evans AM, DeHaven CD, Barrett T, Mitchell M, Milgram E. Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. Anal Chem 2009;81:6656-67; PMID:19624122; http://dx.doi.org/10.1021/ac901536h.
-
(2009)
Anal Chem
, vol.81
, pp. 6656-6667
-
-
Evans, A.M.1
De Haven, C.D.2
Barrett, T.3
Mitchell, M.4
Milgram, E.5
|