-
1
-
-
33750716519
-
Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action
-
Eddy A.A., Fogo A.B. Plasminogen activator inhibitor-1 in chronic kidney disease: evidence and mechanisms of action. J. Am. Soc. Nephrol. 2006, 17:2999-3012.
-
(2006)
J. Am. Soc. Nephrol.
, vol.17
, pp. 2999-3012
-
-
Eddy, A.A.1
Fogo, A.B.2
-
2
-
-
14844337071
-
Transforming growth factor-β1 and Smad signalling in kidney diseases Nephrology
-
Wang W., Koka V., Lan H.Y. Transforming growth factor-β1 and Smad signalling in kidney diseases Nephrology. Wiley Online Library 2005, 48-56.
-
(2005)
Wiley Online Library
, pp. 48-56
-
-
Wang, W.1
Koka, V.2
Lan, H.Y.3
-
3
-
-
0142104985
-
Smad-dependent and Smad-independent pathways in TGF-β family signalling
-
Derynck R., Zhang Y.E. Smad-dependent and Smad-independent pathways in TGF-β family signalling. Nature 2003, 577-584.
-
(2003)
Nature
, pp. 577-584
-
-
Derynck, R.1
Zhang, Y.E.2
-
4
-
-
80052317444
-
The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy
-
Hills C.E., Squires P.E. The role of TGF-β and epithelial-to mesenchymal transition in diabetic nephropathy. Cytokine Growth Factor Rev. 2011.
-
(2011)
Cytokine Growth Factor Rev.
-
-
Hills, C.E.1
Squires, P.E.2
-
5
-
-
0346724511
-
Epithelial-mesenchymal transition and its implications for fibrosis
-
Kalluri R., Neilson E.G. Epithelial-mesenchymal transition and its implications for fibrosis. J. Clin. Invest. 2003, 112:1776-1784.
-
(2003)
J. Clin. Invest.
, vol.112
, pp. 1776-1784
-
-
Kalluri, R.1
Neilson, E.G.2
-
6
-
-
0141866937
-
P38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts
-
Furukawa F., Matsuzaki K., Mori S., Tahashi Y., Yoshida K., Sugano Y., Yamagata H., Matsushita M., Seki T., Inagaki Y. p38 MAPK mediates fibrogenic signal through Smad3 phosphorylation in rat myofibroblasts. Hepatology 2003, 38:879-889.
-
(2003)
Hepatology
, vol.38
, pp. 879-889
-
-
Furukawa, F.1
Matsuzaki, K.2
Mori, S.3
Tahashi, Y.4
Yoshida, K.5
Sugano, Y.6
Yamagata, H.7
Matsushita, M.8
Seki, T.9
Inagaki, Y.10
-
7
-
-
0035907240
-
Identification of novel TGF-β/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach
-
Verrecchia F., Chu M.L., Mauviel A. Identification of novel TGF-β/Smad gene targets in dermal fibroblasts using a combined cDNA microarray/promoter transactivation approach. J. Biol. Chem. 2001, 276:17058-17062.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 17058-17062
-
-
Verrecchia, F.1
Chu, M.L.2
Mauviel, A.3
-
8
-
-
3242797424
-
Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction
-
Inazaki K., Kanamaru Y., Kojima Y., Sueyoshi N., Okumura K., Kaneko K., Yamashiro Y., Ogawa H., Nakao A. Smad3 deficiency attenuates renal fibrosis, inflammation, and apoptosis after unilateral ureteral obstruction. Kidney Int. 2004, 66:597-604.
-
(2004)
Kidney Int.
, vol.66
, pp. 597-604
-
-
Inazaki, K.1
Kanamaru, Y.2
Kojima, Y.3
Sueyoshi, N.4
Okumura, K.5
Kaneko, K.6
Yamashiro, Y.7
Ogawa, H.8
Nakao, A.9
-
9
-
-
0346727324
-
Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction
-
Sato M., Muragaki Y., Saika S., Roberts A.B., Ooshima A. Targeted disruption of TGF-β1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Clin. Invest. 2003, 112:1486-1494.
-
(2003)
J. Clin. Invest.
, vol.112
, pp. 1486-1494
-
-
Sato, M.1
Muragaki, Y.2
Saika, S.3
Roberts, A.B.4
Ooshima, A.5
-
10
-
-
70350780570
-
Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways
-
Alarcon C., Zaromytidou A.I., Xi Q., Gao S., Yu J., Fujisawa S., Barlas A., Miller A.N., ManovaTodorova K., Macias M.J. Nuclear CDKs drive Smad transcriptional activation and turnover in BMP and TGF-β pathways. Cell 2009, 139:757-769.
-
(2009)
Cell
, vol.139
, pp. 757-769
-
-
Alarcon, C.1
Zaromytidou, A.I.2
Xi, Q.3
Gao, S.4
Yu, J.5
Fujisawa, S.6
Barlas, A.7
Miller, A.N.8
ManovaTodorova, K.9
Macias, M.J.10
-
11
-
-
79959640061
-
A Smad action turnover switch operated by WW domain readers of a phosphoserine code
-
Aragon E., Goerner N., Zaromytidou A.I., Xi Q., Escobedo A., Massague J., Macias M.J. A Smad action turnover switch operated by WW domain readers of a phosphoserine code. Gene. Dev. 2011, 25:1275-1288.
-
(2011)
Gene. Dev.
, vol.25
, pp. 1275-1288
-
-
Aragon, E.1
Goerner, N.2
Zaromytidou, A.I.3
Xi, Q.4
Escobedo, A.5
Massague, J.6
Macias, M.J.7
-
12
-
-
0032934979
-
Targeted disruption of Smad3 reveals an essential role in transforming growth factor β-mediated signal transduction
-
Datto M.B., Frederick J.P., Pan L., Borton A.J., Zhuang Y., Wang X.F. Targeted disruption of Smad3 reveals an essential role in transforming growth factor β-mediated signal transduction. Mol. Cell. Biol. 1999, 19:2495-2504.
-
(1999)
Mol. Cell. Biol.
, vol.19
, pp. 2495-2504
-
-
Datto, M.B.1
Frederick, J.P.2
Pan, L.3
Borton, A.J.4
Zhuang, Y.5
Wang, X.F.6
-
13
-
-
38149054804
-
Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling
-
Guo X., Ramirez A., Waddell D.S., Li Z., Liu X., Wang X.F. Axin and GSK3-β control Smad3 protein stability and modulate TGF-β signaling. Gene. Dev. 2008, 22:106-120.
-
(2008)
Gene. Dev.
, vol.22
, pp. 106-120
-
-
Guo, X.1
Ramirez, A.2
Waddell, D.S.3
Li, Z.4
Liu, X.5
Wang, X.F.6
-
14
-
-
12544257249
-
Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-β-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo
-
Kamaraju A.K., Roberts A.B. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-β-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J. Biol. Chem. 2005, 280:1024-1036.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 1024-1036
-
-
Kamaraju, A.K.1
Roberts, A.B.2
-
15
-
-
26244439497
-
The endogenous ratio of Smad2 and Smad3 influences the cytostatic function of Smad3
-
Kim S.G., Kim H.A., Jong H.S., Park J.H., Kim N.K., Hong S.H., Kim T.Y., Bang Y.J. The endogenous ratio of Smad2 and Smad3 influences the cytostatic function of Smad3. Mol. Biol. Cell 2005, 16:4672-4683.
-
(2005)
Mol. Biol. Cell
, vol.16
, pp. 4672-4683
-
-
Kim, S.G.1
Kim, H.A.2
Jong, H.S.3
Park, J.H.4
Kim, N.K.5
Hong, S.H.6
Kim, T.Y.7
Bang, Y.J.8
-
16
-
-
0033106484
-
A mechanism of repression of TGF-β/Smad signaling by oncogenic Ras
-
Kretzschmar M., Doody J., Timokhina I., Massague J. A mechanism of repression of TGF-β/Smad signaling by oncogenic Ras. Gene. Dev. 1999, 13:804.
-
(1999)
Gene. Dev.
, vol.13
, pp. 804
-
-
Kretzschmar, M.1
Doody, J.2
Timokhina, I.3
Massague, J.4
-
17
-
-
30944436222
-
Smad3 phosphorylation by cyclin-dependent kinases
-
Liu F. Smad3 phosphorylation by cyclin-dependent kinases. Cytokine Growth Factor Rev. 2006, 17:9-17.
-
(2006)
Cytokine Growth Factor Rev.
, vol.17
, pp. 9-17
-
-
Liu, F.1
-
18
-
-
22844440952
-
Perspectives inhibition of Smad antiproliferative function by CDK phosphorylation
-
Liu F., Matsuura I. Perspectives inhibition of Smad antiproliferative function by CDK phosphorylation. Cell Cycle 2005, 4:63-66.
-
(2005)
Cell Cycle
, vol.4
, pp. 63-66
-
-
Liu, F.1
Matsuura, I.2
-
19
-
-
3142546336
-
Cyclin-dependent kinases regulate the antiproliferative function of Smads
-
Matsuura I., Denissova N.G., Wang G., He D., Long J., Liu F. Cyclin-dependent kinases regulate the antiproliferative function of Smads. Nature 2004, 430:226-231.
-
(2004)
Nature
, vol.430
, pp. 226-231
-
-
Matsuura, I.1
Denissova, N.G.2
Wang, G.3
He, D.4
Long, J.5
Liu, F.6
-
20
-
-
24944439828
-
Identification and characterization of ERK MAP kinase phosphorylation sites in Smad3
-
Matsuura I., Wang G., He D., Liu F. Identification and characterization of ERK MAP kinase phosphorylation sites in Smad3. Biochemistry 2005, 44:12546-12553.
-
(2005)
Biochemistry
, vol.44
, pp. 12546-12553
-
-
Matsuura, I.1
Wang, G.2
He, D.3
Liu, F.4
-
21
-
-
6044261233
-
TGF-β and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions
-
Mori S., Matsuzaki K., Yoshida K., Furukawa F., Tahashi Y., Yamagata H., Sekimoto G., Seki T., Matsui H., Nishizawa M. TGF-β and HGF transmit the signals through JNK-dependent Smad2/3 phosphorylation at the linker regions. Oncogene 2004, 23:7416-7429.
-
(2004)
Oncogene
, vol.23
, pp. 7416-7429
-
-
Mori, S.1
Matsuzaki, K.2
Yoshida, K.3
Furukawa, F.4
Tahashi, Y.5
Yamagata, H.6
Sekimoto, G.7
Seki, T.8
Matsui, H.9
Nishizawa, M.10
-
22
-
-
58149239730
-
Phospho-control of TGF-β superfamily signaling
-
Wrighton K.H., Lin X., Feng X.H. Phospho-control of TGF-β superfamily signaling. Cell Res. 2008, 19:8-20.
-
(2008)
Cell Res.
, vol.19
, pp. 8-20
-
-
Wrighton, K.H.1
Lin, X.2
Feng, X.H.3
-
23
-
-
21444453507
-
Characterization of a novel transcriptionally active domain in the transforming growth factor β-regulated Smad3 protein
-
Prokova V., Mavridou S., Papakosta P., Kardassis D. Characterization of a novel transcriptionally active domain in the transforming growth factor β-regulated Smad3 protein. Nucleic Acids Res. 2005, 33:3708-3721.
-
(2005)
Nucleic Acids Res.
, vol.33
, pp. 3708-3721
-
-
Prokova, V.1
Mavridou, S.2
Papakosta, P.3
Kardassis, D.4
-
24
-
-
14244251723
-
The Smad3 linker region contains a transcriptional activation domain
-
Wang G., Long J., Matsuura I., He D., Liu F. The Smad3 linker region contains a transcriptional activation domain. Biochem. J. 2005, 386:29.
-
(2005)
Biochem. J.
, vol.386
, pp. 29
-
-
Wang, G.1
Long, J.2
Matsuura, I.3
He, D.4
Liu, F.5
-
25
-
-
63849095053
-
PAI-1 and kidney fibrosis
-
Ma L.J., Fogo A.B. PAI-1 and kidney fibrosis. Front. Biosci. 2009, 14:2028.
-
(2009)
Front. Biosci.
, vol.14
, pp. 2028
-
-
Ma, L.J.1
Fogo, A.B.2
-
26
-
-
0037566734
-
Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy
-
Fujimoto M., Maezawa Y., Yokote K., Joh K., Kobayashi K., Kawamura H., Nishimura M., Roberts A.B., Saito Y., Mori S. Mice lacking Smad3 are protected against streptozotocin-induced diabetic glomerulopathy. Biochem. Biophys. Res. Commun. 2003, 305:1002-1007.
-
(2003)
Biochem. Biophys. Res. Commun.
, vol.305
, pp. 1002-1007
-
-
Fujimoto, M.1
Maezawa, Y.2
Yokote, K.3
Joh, K.4
Kobayashi, K.5
Kawamura, H.6
Nishimura, M.7
Roberts, A.B.8
Saito, Y.9
Mori, S.10
-
27
-
-
73549092294
-
Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice
-
Li J., Qu X., Bertram J.F. Endothelial-myofibroblast transition contributes to the early development of diabetic renal interstitial fibrosis in streptozotocin-induced diabetic mice. Am. J. Pathol. 2009, 175:1380-1388.
-
(2009)
Am. J. Pathol.
, vol.175
, pp. 1380-1388
-
-
Li, J.1
Qu, X.2
Bertram, J.F.3
-
28
-
-
77957573525
-
Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy
-
Li J., Qu X., Yao J., Caruana G., Ricardo S.D., Yamamoto Y., Yamamoto H., Bertram J.F. Blockade of endothelial-mesenchymal transition by a Smad3 inhibitor delays the early development of streptozotocin-induced diabetic nephropathy. Diabetes 2010, 59:2612-2624.
-
(2010)
Diabetes
, vol.59
, pp. 2612-2624
-
-
Li, J.1
Qu, X.2
Yao, J.3
Caruana, G.4
Ricardo, S.D.5
Yamamoto, Y.6
Yamamoto, H.7
Bertram, J.F.8
-
29
-
-
78650881844
-
Cell division autoantigen 1 enhances signaling and the profibrotic effects of transforming growth factor-β in diabetic nephropathy
-
Tu Y., Wu T., Dai A., Pham Y., Chew P., de Haan J.B., Wang Y., Toh B.H., Zhu H., Cao Z. Cell division autoantigen 1 enhances signaling and the profibrotic effects of transforming growth factor-β in diabetic nephropathy. Kidney Int. 2010, 79:199-209.
-
(2010)
Kidney Int.
, vol.79
, pp. 199-209
-
-
Tu, Y.1
Wu, T.2
Dai, A.3
Pham, Y.4
Chew, P.5
de Haan, J.B.6
Wang, Y.7
Toh, B.H.8
Zhu, H.9
Cao, Z.10
-
30
-
-
82455210962
-
Ablation of Smurf2 reveals an inhibition in TGF-β signalling through multiple mono-ubiquitination of Smad3
-
Tang L.Y., Yamashita M., Coussens N.P., Tang Y., Wang X., Li C., Deng C.X., Cheng S.Y., Zhang Y.E. Ablation of Smurf2 reveals an inhibition in TGF-β signalling through multiple mono-ubiquitination of Smad3. EMBO. J. 2011, 30:4777-4789.
-
(2011)
EMBO. J.
, vol.30
, pp. 4777-4789
-
-
Tang, L.Y.1
Yamashita, M.2
Coussens, N.P.3
Tang, Y.4
Wang, X.5
Li, C.6
Deng, C.X.7
Cheng, S.Y.8
Zhang, Y.E.9
-
31
-
-
0033607183
-
Postgastrulation Smad2-deficient embryos show defects in embryo turning and anterior morphogenesis
-
Heyer J., Escalante-Alcalde D., Lia M., Boettinger E., Edelmann W., Stewart C.L., Kucherlapati R. Postgastrulation Smad2-deficient embryos show defects in embryo turning and anterior morphogenesis. Proc. Natl. Acad. Sci. USA 1999, 96:12595.
-
(1999)
Proc. Natl. Acad. Sci. USA
, vol.96
, pp. 12595
-
-
Heyer, J.1
Escalante-Alcalde, D.2
Lia, M.3
Boettinger, E.4
Edelmann, W.5
Stewart, C.L.6
Kucherlapati, R.7
-
32
-
-
0032565859
-
Smad2 role in mesoderm formation, left-light patterning and craniofacial development
-
Nomura M., Li E. Smad2 role in mesoderm formation, left-light patterning and craniofacial development. Nature 1998, 393:786-790.
-
(1998)
Nature
, vol.393
, pp. 786-790
-
-
Nomura, M.1
Li, E.2
-
33
-
-
0033104503
-
Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β
-
Yang X., Letterio J.J., Lechleider R.J., Chen L., Hayman R., Gu H., Roberts A.B., Deng C. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO. J. 1999, 18:1280-1291.
-
(1999)
EMBO. J.
, vol.18
, pp. 1280-1291
-
-
Yang, X.1
Letterio, J.J.2
Lechleider, R.J.3
Chen, L.4
Hayman, R.5
Gu, H.6
Roberts, A.B.7
Deng, C.8
-
34
-
-
77956548300
-
Smad2 protects against TGF-β/Smad3-mediated renal fibrosis
-
Meng X.M., Huang X.R., Chung A.C.K., Qin W., Shao X., Igarashi P., Ju W., Bottinger E.P., Lan H.Y. Smad2 protects against TGF-β/Smad3-mediated renal fibrosis. J. Am. Soc. Nephrol. 2010, 21:1477-1487.
-
(2010)
J. Am. Soc. Nephrol.
, vol.21
, pp. 1477-1487
-
-
Meng, X.M.1
Huang, X.R.2
Chung, A.C.K.3
Qin, W.4
Shao, X.5
Igarashi, P.6
Ju, W.7
Bottinger, E.P.8
Lan, H.Y.9
|