메뉴 건너뛰기




Volumn 30, Issue 11, 2012, Pages 1853-1859

Long-term administration of AMD3100, an antagonist of SDF-1/CXCR4 signaling, alters fracture repair

Author keywords

adult derived stem cells; AMD3100; CXCR4; fracture; SDF 1

Indexed keywords

CHEMOKINE RECEPTOR CXCR4; COLLAGEN TYPE 1; COLLAGEN TYPE 1 APHA 1; COLLAGEN TYPE 2; COLLAGEN TYPE 2 ALPHA 1; INDUCIBLE NITRIC OXIDE SYNTHASE; LIPOCORTIN 5; MAMMALIAN TARGET OF RAPAMYCIN; PLERIXAFOR; STROMAL CELL DERIVED FACTOR 1; UNCLASSIFIED DRUG; VASCULOTROPIN;

EID: 84867233412     PISSN: 07360266     EISSN: 1554527X     Source Type: Journal    
DOI: 10.1002/jor.22145     Document Type: Article
Times cited : (67)

References (49)
  • 1
    • 0037376627 scopus 로고    scopus 로고
    • Fracture healing as a post-natal developmental process: Molecular, spatial, and temporal aspects of its regulation
    • Gerstenfeld LC, Cullinane DM, Barnes GL, et al. 2003. Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88: 873-884.
    • (2003) J Cell Biochem , vol.88 , pp. 873-884
    • Gerstenfeld, L.C.1    Cullinane, D.M.2    Barnes, G.L.3
  • 2
    • 33749589362 scopus 로고    scopus 로고
    • Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice
    • Colnot C, Huang S, Helms J., 2006. Analyzing the cellular contribution of bone marrow to fracture healing using bone marrow transplantation in mice. Biochem Biophys Res Commun 350: 557-561.
    • (2006) Biochem Biophys Res Commun , vol.350 , pp. 557-561
    • Colnot, C.1    Huang, S.2    Helms, J.3
  • 3
    • 17444384509 scopus 로고    scopus 로고
    • The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model
    • Taguchi K, Ogawa R, Migita M, et al. 2005. The role of bone marrow-derived cells in bone fracture repair in a green fluorescent protein chimeric mouse model. Biochem Biophys Res Commun 331: 31-36.
    • (2005) Biochem Biophys Res Commun , vol.331 , pp. 31-36
    • Taguchi, K.1    Ogawa, R.2    Migita, M.3
  • 4
    • 58649117944 scopus 로고    scopus 로고
    • Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration
    • Colnot C., 2009. Skeletal cell fate decisions within periosteum and bone marrow during bone regeneration. J Bone Miner Res 24: 274-282.
    • (2009) J Bone Miner Res , vol.24 , pp. 274-282
    • Colnot, C.1
  • 5
    • 70349790426 scopus 로고    scopus 로고
    • Perivascular multipotent progenitor cells in human organs
    • Crisan M, Chen CW, Corselli M, et al. 2009. Perivascular multipotent progenitor cells in human organs. Ann N Y Acad Sci 1176: 118-123.
    • (2009) Ann N y Acad Sci , vol.1176 , pp. 118-123
    • Crisan, M.1    Chen, C.W.2    Corselli, M.3
  • 6
    • 38349073636 scopus 로고    scopus 로고
    • Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway
    • Otsuru S, Tamai K, Yamazaki T, et al. 2008. Circulating bone marrow-derived osteoblast progenitor cells are recruited to the bone-forming site by the CXCR4/stromal cell-derived factor-1 pathway. Stem Cells 26: 223-234.
    • (2008) Stem Cells , vol.26 , pp. 223-234
    • Otsuru, S.1    Tamai, K.2    Yamazaki, T.3
  • 7
    • 33744725227 scopus 로고    scopus 로고
    • Circulating cells with osteogenic potential
    • Khosla S, Eghbali-Fatourechi GZ., 2006. Circulating cells with osteogenic potential. Ann N Y Acad Sci 1068: 489-497.
    • (2006) Ann N y Acad Sci , vol.1068 , pp. 489-497
    • Khosla, S.1    Eghbali-Fatourechi, G.Z.2
  • 8
    • 38849099826 scopus 로고    scopus 로고
    • Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model
    • Kumagai K, Vasanji A, Drazba JA, et al. 2008. Circulating cells with osteogenic potential are physiologically mobilized into the fracture healing site in the parabiotic mice model. J Orthop Res 26: 165-175.
    • (2008) J Orthop Res , vol.26 , pp. 165-175
    • Kumagai, K.1    Vasanji, A.2    Drazba, J.A.3
  • 9
    • 27744607999 scopus 로고    scopus 로고
    • Current concepts of molecular aspects of bone healing
    • Dimitriou R, Tsiridis E, Giannoudis PV., 2005. Current concepts of molecular aspects of bone healing. Injury 36: 1392-1404.
    • (2005) Injury , vol.36 , pp. 1392-1404
    • Dimitriou, R.1    Tsiridis, E.2    Giannoudis, P.V.3
  • 10
    • 0015301667 scopus 로고
    • Oxygen tension of healing fractures in the rabbit
    • Brighton CT, Krebs AG., 1972. Oxygen tension of healing fractures in the rabbit. J Bone Joint Surg Am 54: 323-332.
    • (1972) J Bone Joint Surg Am , vol.54 , pp. 323-332
    • Brighton, C.T.1    Krebs, A.G.2
  • 11
    • 77952315694 scopus 로고    scopus 로고
    • The effect of oxygen tension on the long-term osteogenic differentiation and MMP/TIMP expression of human mesenchymal stem cells
    • Raheja LF, Genetos DC, Yellowley CE., 2010. The effect of oxygen tension on the long-term osteogenic differentiation and MMP/TIMP expression of human mesenchymal stem cells. Cells Tissues Organs 191: 175-184.
    • (2010) Cells Tissues Organs , vol.191 , pp. 175-184
    • Raheja, L.F.1    Genetos, D.C.2    Yellowley, C.E.3
  • 12
    • 77952027256 scopus 로고    scopus 로고
    • Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts
    • Genetos DC, Toupadakis CA, Raheja LF, et al. 2010. Hypoxia decreases sclerostin expression and increases Wnt signaling in osteoblasts. J Cell Biochem 110: 457-467.
    • (2010) J Cell Biochem , vol.110 , pp. 457-467
    • Genetos, D.C.1    Toupadakis, C.A.2    Raheja, L.F.3
  • 13
    • 0034006016 scopus 로고    scopus 로고
    • HIF-1: Mediator of physiological and pathophysiological responses to hypoxia
    • Semenza GL., 2000. HIF-1: mediator of physiological and pathophysiological responses to hypoxia. J Appl Physiol 88: 1474-1480.
    • (2000) J Appl Physiol , vol.88 , pp. 1474-1480
    • Semenza, G.L.1
  • 14
    • 4043184065 scopus 로고    scopus 로고
    • Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1
    • Ceradini DJ, Kulkarni AR, Callaghan MJ, et al. 2004. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat Med 10: 858-864.
    • (2004) Nat Med , vol.10 , pp. 858-864
    • Ceradini, D.J.1    Kulkarni, A.R.2    Callaghan, M.J.3
  • 15
    • 23844513413 scopus 로고    scopus 로고
    • Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: Pivotal role of the SDF-1-CXCR4 axis
    • Kucia M, Reca R, Miekus K, et al. 2005. Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells 23: 879-894.
    • (2005) Stem Cells , vol.23 , pp. 879-894
    • Kucia, M.1    Reca, R.2    Miekus, K.3
  • 16
    • 0034080318 scopus 로고    scopus 로고
    • The biology of chemokines and their receptors
    • Rossi D, Zlotnik A., 2000. The biology of chemokines and their receptors. Annu Rev Immunol 18: 217-242.
    • (2000) Annu Rev Immunol , vol.18 , pp. 217-242
    • Rossi, D.1    Zlotnik, A.2
  • 17
    • 33747479176 scopus 로고    scopus 로고
    • The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner
    • Kucia M, Wojakowski W, Reca R, et al. 2006. The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner. Arch Immunol Ther Exp (Warsz) 54: 121-135.
    • (2006) Arch Immunol Ther Exp (Warsz) , vol.54 , pp. 121-135
    • Kucia, M.1    Wojakowski, W.2    Reca, R.3
  • 18
    • 77953536520 scopus 로고    scopus 로고
    • Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells
    • Hosogane N, Huang Z, Rawlins BA, et al. 2010. Stromal derived factor-1 regulates bone morphogenetic protein 2-induced osteogenic differentiation of primary mesenchymal stem cells. Int J Biochem Cell Biol 42: 1132-1141.
    • (2010) Int J Biochem Cell Biol , vol.42 , pp. 1132-1141
    • Hosogane, N.1    Huang, Z.2    Rawlins, B.A.3
  • 19
    • 18144383028 scopus 로고    scopus 로고
    • Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts
    • Wright LM, Maloney W, Yu X, et al. 2005. Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 36: 840-853.
    • (2005) Bone , vol.36 , pp. 840-853
    • Wright, L.M.1    Maloney, W.2    Yu, X.3
  • 20
    • 9444226473 scopus 로고    scopus 로고
    • SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells
    • De Falco E, Porcelli D, Torella AR, et al. 2004. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood 104: 3472-3482.
    • (2004) Blood , vol.104 , pp. 3472-3482
    • De Falco, E.1    Porcelli, D.2    Torella, A.R.3
  • 21
    • 77951215055 scopus 로고    scopus 로고
    • Stimulation of chondrocyte hypertrophy by chemokine stromal cell-derived factor 1 in the chondro-osseous junction during endochondral bone formation
    • Wei L, Kanbe K, Lee M, et al. 2010. Stimulation of chondrocyte hypertrophy by chemokine stromal cell-derived factor 1 in the chondro-osseous junction during endochondral bone formation. Dev Biol 341: 236-245.
    • (2010) Dev Biol , vol.341 , pp. 236-245
    • Wei, L.1    Kanbe, K.2    Lee, M.3
  • 22
    • 79960663308 scopus 로고    scopus 로고
    • Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development
    • Zhu W, Liang G, Huang Z, et al. 2011. Conditional inactivation of the CXCR4 receptor in osteoprecursors reduces postnatal bone formation due to impaired osteoblast development. J Biol Chem 286: 26794-26805.
    • (2011) J Biol Chem , vol.286 , pp. 26794-26805
    • Zhu, W.1    Liang, G.2    Huang, Z.3
  • 23
    • 0041327804 scopus 로고    scopus 로고
    • Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy
    • Askari AT, Unzek S, Popovic ZB, et al. 2003. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362: 697-703.
    • (2003) Lancet , vol.362 , pp. 697-703
    • Askari, A.T.1    Unzek, S.2    Popovic, Z.B.3
  • 24
    • 0037063329 scopus 로고    scopus 로고
    • Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4
    • Hatse S, Princen K, Bridger G, et al. 2002. Chemokine receptor inhibition by AMD3100 is strictly confined to CXCR4. FEBS Lett 527: 255-262.
    • (2002) FEBS Lett , vol.527 , pp. 255-262
    • Hatse, S.1    Princen, K.2    Bridger, G.3
  • 25
    • 39849102836 scopus 로고    scopus 로고
    • HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion
    • Du R, Lu KV, Petritsch C, et al. 2008. HIF1alpha induces the recruitment of bone marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion. Cancer Cell 13: 206-220.
    • (2008) Cancer Cell , vol.13 , pp. 206-220
    • Du, R.1    Lu, K.V.2    Petritsch, C.3
  • 26
    • 9244234390 scopus 로고    scopus 로고
    • CXCR4 regulates growth of both primary and metastatic breast cancer
    • Smith MC, Luker KE, Garbow JR, et al. 2004. CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Res 64: 8604-8612.
    • (2004) Cancer Res , vol.64 , pp. 8604-8612
    • Smith, M.C.1    Luker, K.E.2    Garbow, J.R.3
  • 27
    • 0344823964 scopus 로고    scopus 로고
    • A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors
    • Rubin JB, Kung AL, Klein RS, et al. 2003. A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors. Proc Natl Acad Sci USA 100: 13513-13518.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 13513-13518
    • Rubin, J.B.1    Kung, A.L.2    Klein, R.S.3
  • 28
    • 0021612066 scopus 로고
    • Production of a standard closed fracture in laboratory animal bone
    • Bonnarens F, Einhorn TA., 1984. Production of a standard closed fracture in laboratory animal bone. J Orthop Res 2: 97-101.
    • (1984) J Orthop Res , vol.2 , pp. 97-101
    • Bonnarens, F.1    Einhorn, T.A.2
  • 29
    • 16644376326 scopus 로고    scopus 로고
    • Characterization of a closed femur fracture model in mice
    • Manigrasso MB, O'Connor JP., 2004. Characterization of a closed femur fracture model in mice. J Orthop Trauma 18: 687-695.
    • (2004) J Orthop Trauma , vol.18 , pp. 687-695
    • Manigrasso, M.B.1    O'Connor, J.P.2
  • 30
    • 41549140416 scopus 로고    scopus 로고
    • An improved murine femur fracture device for bone healing studies
    • Marturano JE, Cleveland BC, Byrne MA, et al. 2008. An improved murine femur fracture device for bone healing studies. J Biomech 41: 1222-1228.
    • (2008) J Biomech , vol.41 , pp. 1222-1228
    • Marturano, J.E.1    Cleveland, B.C.2    Byrne, M.A.3
  • 31
    • 25444532005 scopus 로고    scopus 로고
    • Application of histomorphometric methods to the study of bone repair
    • Gerstenfeld LC, Wronski TJ, Hollinger JO, et al. 2005. Application of histomorphometric methods to the study of bone repair. J Bone Miner Res 20: 1715-1722.
    • (2005) J Bone Miner Res , vol.20 , pp. 1715-1722
    • Gerstenfeld, L.C.1    Wronski, T.J.2    Hollinger, J.O.3
  • 32
    • 0003574242 scopus 로고    scopus 로고
    • New York: Garland Science/BIOS Scientific Publishers
    • Howard C, Reed MG., 2005. Unbiased stereology. New York: Garland Science/BIOS Scientific Publishers.
    • (2005) Unbiased Stereology
    • Howard, C.1    Reed, M.G.2
  • 33
    • 58249119459 scopus 로고    scopus 로고
    • Micro-computed tomography assessment of fracture healing: Relationships among callus structure, composition, and mechanical function
    • Morgan EF, Mason ZD, Chien KB, et al. 2009. Micro-computed tomography assessment of fracture healing: relationships among callus structure, composition, and mechanical function. Bone 44: 335-344.
    • (2009) Bone , vol.44 , pp. 335-344
    • Morgan, E.F.1    Mason, Z.D.2    Chien, K.B.3
  • 34
    • 44949231424 scopus 로고    scopus 로고
    • Analyzing real-time PCR data by the comparative C(T) method
    • Schmittgen TD, Livak KJ., 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 3: 1101-1108.
    • (2008) Nat Protoc , vol.3 , pp. 1101-1108
    • Schmittgen, T.D.1    Livak, K.J.2
  • 35
    • 0021228371 scopus 로고
    • Tissue oxygen tension in externally stabilized tibial fractures in rabbits during normal healing and infection
    • Aro H, Eerola E, Aho AJ, et al. 1984. Tissue oxygen tension in externally stabilized tibial fractures in rabbits during normal healing and infection. J Surg Res 37: 202-207.
    • (1984) J Surg Res , vol.37 , pp. 202-207
    • Aro, H.1    Eerola, E.2    Aho, A.J.3
  • 36
    • 50949109494 scopus 로고    scopus 로고
    • Pressure, oxygen tension and temperature in the periosteal callus during bone healinga-an in vivo study in sheep
    • Epari DR, Lienau J, Schell H, et al. 2008. Pressure, oxygen tension and temperature in the periosteal callus during bone healinga-an in vivo study in sheep. Bone 43: 734-739.
    • (2008) Bone , vol.43 , pp. 734-739
    • Epari, D.R.1    Lienau, J.2    Schell, H.3
  • 37
    • 64549127851 scopus 로고    scopus 로고
    • Tibial fracture decreases oxygen levels at the site of injury
    • Lu C, Rollins M, Hou H, et al. 2008. Tibial fracture decreases oxygen levels at the site of injury. Iowa Orthop J 28: 14-21.
    • (2008) Iowa Orthop J , vol.28 , pp. 14-21
    • Lu, C.1    Rollins, M.2    Hou, H.3
  • 38
    • 0001082790 scopus 로고
    • Influence of oxygen concentration and mechanical factors on differentiation of connective tissues in vitro
    • Bassett CA, Herrmann I., 1961. Influence of oxygen concentration and mechanical factors on differentiation of connective tissues in vitro. Nature 190: 460-461.
    • (1961) Nature , vol.190 , pp. 460-461
    • Bassett, C.A.1    Herrmann, I.2
  • 39
    • 0035499204 scopus 로고    scopus 로고
    • Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival
    • Schipani E, Ryan HE, Didrickson S, et al. 2001. Hypoxia in cartilage: HIF-1alpha is essential for chondrocyte growth arrest and survival. Genes Dev 15: 2865-2876.
    • (2001) Genes Dev , vol.15 , pp. 2865-2876
    • Schipani, E.1    Ryan, H.E.2    Didrickson, S.3
  • 40
    • 61649090805 scopus 로고    scopus 로고
    • Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model
    • Kitaori T, Ito H, Schwarz EM, et al. 2009. Stromal cell-derived factor 1/CXCR4 signaling is critical for the recruitment of mesenchymal stem cells to the fracture site during skeletal repair in a mouse model. Arthritis Rheum 60: 813-823.
    • (2009) Arthritis Rheum , vol.60 , pp. 813-823
    • Kitaori, T.1    Ito, H.2    Schwarz, E.M.3
  • 41
    • 69249162221 scopus 로고    scopus 로고
    • Regenerative effects of transplanted mesenchymal stem cells in fracture healing
    • Granero-Molto F, Weis JA, Miga MI, et al. 2009. Regenerative effects of transplanted mesenchymal stem cells in fracture healing. Stem Cells 27: 1887-1898.
    • (2009) Stem Cells , vol.27 , pp. 1887-1898
    • Granero-Molto, F.1    Weis, J.A.2    Miga, M.I.3
  • 42
    • 44849139605 scopus 로고    scopus 로고
    • Collagen/annexin v interactions regulate chondrocyte mineralization
    • Kim HJ, Kirsch T., 2008. Collagen/annexin V interactions regulate chondrocyte mineralization. J Biol Chem 283: 10310-10317.
    • (2008) J Biol Chem , vol.283 , pp. 10310-10317
    • Kim, H.J.1    Kirsch, T.2
  • 43
    • 18244410123 scopus 로고    scopus 로고
    • Thrombin peptide (TP508) promotes fracture repair by up-regulating inflammatory mediators, early growth factors, and increasing angiogenesis
    • Wang H, Li X, Tomin E, et al. 2005. Thrombin peptide (TP508) promotes fracture repair by up-regulating inflammatory mediators, early growth factors, and increasing angiogenesis. J Orthop Res 23: 671-679.
    • (2005) J Orthop Res , vol.23 , pp. 671-679
    • Wang, H.1    Li, X.2    Tomin, E.3
  • 44
    • 0035999441 scopus 로고    scopus 로고
    • Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading
    • Watanuki M, Sakai A, Sakata T, et al. 2002. Role of inducible nitric oxide synthase in skeletal adaptation to acute increases in mechanical loading. J Bone Miner Res 17: 1015-1025.
    • (2002) J Bone Miner Res , vol.17 , pp. 1015-1025
    • Watanuki, M.1    Sakai, A.2    Sakata, T.3
  • 45
    • 0033953208 scopus 로고    scopus 로고
    • Nitric oxide modulates fracture healing
    • Diwan AD, Wang MX, Jang D, et al. 2000. Nitric oxide modulates fracture healing. J Bone Miner Res 15: 342-351.
    • (2000) J Bone Miner Res , vol.15 , pp. 342-351
    • Diwan, A.D.1    Wang, M.X.2    Jang, D.3
  • 46
    • 20544448199 scopus 로고    scopus 로고
    • Deletion of iNOS gene impairs mouse fracture healing
    • Baldik Y, Diwan AD, Appleyard RC, et al. 2005. Deletion of iNOS gene impairs mouse fracture healing. Bone 37: 32-36.
    • (2005) Bone , vol.37 , pp. 32-36
    • Baldik, Y.1    Diwan, A.D.2    Appleyard, R.C.3
  • 47
    • 38649110155 scopus 로고    scopus 로고
    • Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells
    • Singha UK, Jiang Y, Yu S, et al. 2008. Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J Cell Biochem 103: 434-446.
    • (2008) J Cell Biochem , vol.103 , pp. 434-446
    • Singha, U.K.1    Jiang, Y.2    Yu, S.3
  • 48
    • 40849126775 scopus 로고    scopus 로고
    • MTOR signaling contributes to chondrocyte differentiation
    • Phornphutkul C, Wu KY, Auyeung V, et al. 2008. mTOR signaling contributes to chondrocyte differentiation. Dev Dyn 237: 702-712.
    • (2008) Dev Dyn , vol.237 , pp. 702-712
    • Phornphutkul, C.1    Wu, K.Y.2    Auyeung, V.3
  • 49
    • 0141893375 scopus 로고    scopus 로고
    • M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase
    • Glantschnig H, Fisher JE, Wesolowski G, et al. 2003. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ 10: 1165-1177.
    • (2003) Cell Death Differ , vol.10 , pp. 1165-1177
    • Glantschnig, H.1    Fisher, J.E.2    Wesolowski, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.