-
1
-
-
58149191270
-
The Universal Protein Resource (UniProt) 2009
-
The UniProt Consortium
-
The UniProt Consortium The Universal Protein Resource (UniProt) 2009. Nucleic Acids Res. 2009, 37:D169-D174.
-
(2009)
Nucleic Acids Res.
, vol.37
-
-
-
2
-
-
33847795359
-
Intrinsic disorder and functional proteomics
-
Radivojac P., et al. Intrinsic disorder and functional proteomics. Biophys. J. 2007, 92:1439-1456.
-
(2007)
Biophys. J.
, vol.92
, pp. 1439-1456
-
-
Radivojac, P.1
-
3
-
-
77955858336
-
Post-translational modification of p53: cooperative integrators of function
-
Meek D.W., Anderson C.W. Post-translational modification of p53: cooperative integrators of function. Cold Spring Harb. Perspect. Biol. 2009, 1:a000950.
-
(2009)
Cold Spring Harb. Perspect. Biol.
, vol.1
-
-
Meek, D.W.1
Anderson, C.W.2
-
5
-
-
65149105339
-
A post-translational modification code for transcription factors: sorting through a sea of signals
-
Benayoun B.A., Veitia R.A. A post-translational modification code for transcription factors: sorting through a sea of signals. Trends Cell Biol. 2009, 19:189-197.
-
(2009)
Trends Cell Biol.
, vol.19
, pp. 189-197
-
-
Benayoun, B.A.1
Veitia, R.A.2
-
6
-
-
77953292595
-
Post-translational modifications in signal integration
-
Deribe Y.L., et al. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol. 2010, 17:666-672.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 666-672
-
-
Deribe, Y.L.1
-
7
-
-
70350150000
-
The emerging complexity of protein ubiquitination
-
Komander D. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 2009, 37:937-953.
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 937-953
-
-
Komander, D.1
-
8
-
-
79955484976
-
The spatial and temporal organization of ubiquitin networks
-
Grabbe C., et al. The spatial and temporal organization of ubiquitin networks. Nat. Rev. Mol. Cell Biol. 2011, 12:295-307.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 295-307
-
-
Grabbe, C.1
-
9
-
-
78149473070
-
Allostery and population shift in drug discovery
-
Kar G., et al. Allostery and population shift in drug discovery. Curr. Opin. Pharmacol. 2010, 10:715-722.
-
(2010)
Curr. Opin. Pharmacol.
, vol.10
, pp. 715-722
-
-
Kar, G.1
-
10
-
-
60649109828
-
Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms
-
Tsai C.J., et al. Protein allostery, signal transmission and dynamics: a classification scheme of allosteric mechanisms. Mol. Biosyst. 2009, 5:207-216.
-
(2009)
Mol. Biosyst.
, vol.5
, pp. 207-216
-
-
Tsai, C.J.1
-
11
-
-
68149157248
-
The origin of allosteric functional modulation: multiple pre-existing pathways
-
del Sol A., et al. The origin of allosteric functional modulation: multiple pre-existing pathways. Structure 2009, 17:1042-1050.
-
(2009)
Structure
, vol.17
, pp. 1042-1050
-
-
del Sol, A.1
-
12
-
-
0004263083
-
-
W.B. Saunders, T.D. Pollard (Ed.)
-
Cell Biology 2007, W.B. Saunders. T.D. Pollard (Ed.).
-
(2007)
Cell Biology
-
-
-
13
-
-
63049125531
-
Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation
-
Xu P., et al. Quantitative proteomics reveals the function of unconventional ubiquitin chains in proteasomal degradation. Cell 2009, 137:133-145.
-
(2009)
Cell
, vol.137
, pp. 133-145
-
-
Xu, P.1
-
14
-
-
43049162227
-
Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex
-
Jin L.Y., et al. Mechanism of ubiquitin-chain formation by the human anaphase-promoting complex. Cell 2008, 133:653-665.
-
(2008)
Cell
, vol.133
, pp. 653-665
-
-
Jin, L.Y.1
-
15
-
-
59649086030
-
Nonproteolytic functions of ubiquitin in cell signaling
-
Chen Z.J., Sun L.J. Nonproteolytic functions of ubiquitin in cell signaling. Mol. Cell 2009, 33:275-286.
-
(2009)
Mol. Cell
, vol.33
, pp. 275-286
-
-
Chen, Z.J.1
Sun, L.J.2
-
16
-
-
82255179513
-
Emerging roles of the SUMO pathway in development
-
Lomelí H., Vázquez M. Emerging roles of the SUMO pathway in development. Cell. Mol. Life Sci. 2011, 68:4045-4064.
-
(2011)
Cell. Mol. Life Sci.
, vol.68
, pp. 4045-4064
-
-
Lomelí, H.1
Vázquez, M.2
-
17
-
-
77952566949
-
Mechanisms, regulation and consequences of protein SUMOylation
-
Wilkinson K.A., Henley J.M. Mechanisms, regulation and consequences of protein SUMOylation. Biochem. J. 2010, 428:133-145.
-
(2010)
Biochem. J.
, vol.428
, pp. 133-145
-
-
Wilkinson, K.A.1
Henley, J.M.2
-
18
-
-
21144444486
-
HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor
-
Kovacs J.J., et al. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 2005, 18:601-607.
-
(2005)
Mol. Cell
, vol.18
, pp. 601-607
-
-
Kovacs, J.J.1
-
19
-
-
7044250740
-
Lysine acetylation and the bromodomain: a new partnership for signaling
-
Yang X.J. Lysine acetylation and the bromodomain: a new partnership for signaling. Bioessays 2004, 26:1076-1087.
-
(2004)
Bioessays
, vol.26
, pp. 1076-1087
-
-
Yang, X.J.1
-
20
-
-
63649144413
-
Principles of ubiquitin and SUMO modifications in DNA repair
-
Bergink S., Jentsch S. Principles of ubiquitin and SUMO modifications in DNA repair. Nature 2009, 458:461-467.
-
(2009)
Nature
, vol.458
, pp. 461-467
-
-
Bergink, S.1
Jentsch, S.2
-
21
-
-
79952112962
-
SnapShot: the SUMO system
-
Creton S., Jentsch S. SnapShot: the SUMO system. Cell 2010, 143:848.
-
(2010)
Cell
, vol.143
, pp. 848
-
-
Creton, S.1
Jentsch, S.2
-
22
-
-
17844401751
-
SUMO modification of the ubiquitin-conjugating enzyme E2-25K
-
Pichler A., et al. SUMO modification of the ubiquitin-conjugating enzyme E2-25K. Nat. Struct. Mol. Biol. 2005, 12:264-269.
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 264-269
-
-
Pichler, A.1
-
23
-
-
78049391231
-
Mitotic phosphorylation of Cdc25B Ser(321) disrupts 14-3-3 binding to the high affinity Ser(323) site
-
Astuti P., et al. Mitotic phosphorylation of Cdc25B Ser(321) disrupts 14-3-3 binding to the high affinity Ser(323) site. J. Biol. Chem. 2010, 285:34364-34370.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 34364-34370
-
-
Astuti, P.1
-
24
-
-
77956340499
-
An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein
-
Hirschi A., et al. An overlapping kinase and phosphatase docking site regulates activity of the retinoblastoma protein. Nat. Struct. Mol. Biol. 2010, 17:1051-1057.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1051-1057
-
-
Hirschi, A.1
-
25
-
-
6344219895
-
Is allostery an intrinsic property of all dynamic proteins?
-
Gunasekaran K., et al. Is allostery an intrinsic property of all dynamic proteins?. Proteins Struct. Funct. Genet. 2004, 57:433-443.
-
(2004)
Proteins Struct. Funct. Genet.
, vol.57
, pp. 433-443
-
-
Gunasekaran, K.1
-
26
-
-
34347330223
-
Ubiquitination-induced conformational change within the deiodinase dimer is a switch regulating enzyme activity
-
Sagar G.D.V., et al. Ubiquitination-induced conformational change within the deiodinase dimer is a switch regulating enzyme activity. Mol. Cell. Biol. 2007, 27:4774-4783.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 4774-4783
-
-
Sagar, G.D.V.1
-
27
-
-
78951476724
-
Intracellular ubiquitylation of the epithelial Na(+) channel controls extracellular proteolytic channel activation via conformational change
-
Ruffieux-Daidie D., Staub O. Intracellular ubiquitylation of the epithelial Na(+) channel controls extracellular proteolytic channel activation via conformational change. J. Biol. Chem. 2011, 286:2416-2424.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 2416-2424
-
-
Ruffieux-Daidie, D.1
Staub, O.2
-
28
-
-
70350464182
-
Phosphorylation-induced conformational changes in Rap1b: allosteric effects on switch domains and effector loop
-
Edreira M.M., et al. Phosphorylation-induced conformational changes in Rap1b: allosteric effects on switch domains and effector loop. J. Biol. Chem. 2009, 284:27480-27486.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 27480-27486
-
-
Edreira, M.M.1
-
29
-
-
0035413607
-
Structural basis for control by phosphorylation
-
Johnson L.N., Lewis R.J. Structural basis for control by phosphorylation. Chem. Rev. 2001, 101:2209-2242.
-
(2001)
Chem. Rev.
, vol.101
, pp. 2209-2242
-
-
Johnson, L.N.1
Lewis, R.J.2
-
30
-
-
27644550586
-
Conformational changes accompany phosphorylation of the epidermal growth factor receptor C-terminal domain
-
Lee N.Y., Koland J.G. Conformational changes accompany phosphorylation of the epidermal growth factor receptor C-terminal domain. Protein Sci. 2005, 14:2793-2803.
-
(2005)
Protein Sci.
, vol.14
, pp. 2793-2803
-
-
Lee, N.Y.1
Koland, J.G.2
-
31
-
-
79957982249
-
Carboxyl-group footprinting maps the dimerization interface and phosphorylation-induced conformational changes of a membrane-associated tyrosine kinase
-
M110.005678
-
Zhang H., et al. Carboxyl-group footprinting maps the dimerization interface and phosphorylation-induced conformational changes of a membrane-associated tyrosine kinase. Mol. Cell. Proteomics 2011, 10. M110.005678.
-
(2011)
Mol. Cell. Proteomics
, vol.10
-
-
Zhang, H.1
-
32
-
-
67650478664
-
Phosphorylation of prion protein at serine 43 induces prion protein conformational change
-
Giannopoulos P.N., et al. Phosphorylation of prion protein at serine 43 induces prion protein conformational change. J. Neurosci. 2009, 29:8743-8751.
-
(2009)
J. Neurosci.
, vol.29
, pp. 8743-8751
-
-
Giannopoulos, P.N.1
-
33
-
-
79951920255
-
P38γ activation triggers dynamical changes in allosteric docking sites
-
Limardo R.G.R., et al. p38γ activation triggers dynamical changes in allosteric docking sites. Biochemistry 2011, 50:1384-1395.
-
(2011)
Biochemistry
, vol.50
, pp. 1384-1395
-
-
Limardo, R.G.R.1
-
34
-
-
80052227822
-
A new twist on clock protein phosphorylation: a conformational change leads to protein degradation
-
Menet J.S., Rosbash M. A new twist on clock protein phosphorylation: a conformational change leads to protein degradation. Mol. Cell 2011, 43:695-697.
-
(2011)
Mol. Cell
, vol.43
, pp. 695-697
-
-
Menet, J.S.1
Rosbash, M.2
-
35
-
-
80052238651
-
Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain
-
Querfurth C., et al. Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. Mol. Cell 2011, 43:713-722.
-
(2011)
Mol. Cell
, vol.43
, pp. 713-722
-
-
Querfurth, C.1
-
36
-
-
41149104308
-
Allostery: absence of a change in shape does not imply that allostery is not at play
-
Tsai C.J., et al. Allostery: absence of a change in shape does not imply that allostery is not at play. J. Mol. Biol. 2008, 378:1-11.
-
(2008)
J. Mol. Biol.
, vol.378
, pp. 1-11
-
-
Tsai, C.J.1
-
37
-
-
80052280656
-
Flexibility of the C-terminal, or CII, ring of KaiC governs the rhythm of the circadian clock of cyanobacteria
-
Chang Y.G., et al. Flexibility of the C-terminal, or CII, ring of KaiC governs the rhythm of the circadian clock of cyanobacteria. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:14431-14436.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 14431-14436
-
-
Chang, Y.G.1
-
38
-
-
79958024318
-
Probing structural differences between PrP(C) and PrP(Sc) by surface nitration and acetylation: evidence of conformational change in the C-terminus
-
Gong B.B., et al. Probing structural differences between PrP(C) and PrP(Sc) by surface nitration and acetylation: evidence of conformational change in the C-terminus. Biochemistry 2011, 50:4963-4972.
-
(2011)
Biochemistry
, vol.50
, pp. 4963-4972
-
-
Gong, B.B.1
-
39
-
-
77958492721
-
Chemical synthesis, folding, and structural insights into O-fucosylated epidermal growth factor-like repeat 12 of mouse Notch-1 receptor
-
Hiruma-Shimizu K., et al. Chemical synthesis, folding, and structural insights into O-fucosylated epidermal growth factor-like repeat 12 of mouse Notch-1 receptor. J. Am. Chem. Soc. 2010, 132:14857-14865.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, pp. 14857-14865
-
-
Hiruma-Shimizu, K.1
-
40
-
-
77957683633
-
A biosensor study indicating that entropy, electrostatics, and receptor glycosylation drive the binding interaction between interleukin-7 and its receptor
-
Walsh S.T.R. A biosensor study indicating that entropy, electrostatics, and receptor glycosylation drive the binding interaction between interleukin-7 and its receptor. Biochemistry 2010, 49:8766-8778.
-
(2010)
Biochemistry
, vol.49
, pp. 8766-8778
-
-
Walsh, S.T.R.1
-
41
-
-
64049096002
-
N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic
-
Glozman R., et al. N-glycans are direct determinants of CFTR folding and stability in secretory and endocytic membrane traffic. J. Cell Biol. 2009, 184:847-862.
-
(2009)
J. Cell Biol.
, vol.184
, pp. 847-862
-
-
Glozman, R.1
-
42
-
-
34147112806
-
Regulation of SRC family coactivators by post-translational modifications
-
Li S.S., Shang Y.F. Regulation of SRC family coactivators by post-translational modifications. Cell. Signal. 2007, 19:1101-1112.
-
(2007)
Cell. Signal.
, vol.19
, pp. 1101-1112
-
-
Li, S.S.1
Shang, Y.F.2
-
43
-
-
52449132322
-
Is there a code embedded in proteins that is based on post-translational modifications?
-
Sims R.J., Reinberg D. Is there a code embedded in proteins that is based on post-translational modifications?. Nat. Rev. Mol. Cell Biol. 2008, 9:815-820.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 815-820
-
-
Sims, R.J.1
Reinberg, D.2
-
45
-
-
0034610814
-
The language of covalent histone modifications
-
Strahl B.D., Allis C.D. The language of covalent histone modifications. Nature 2000, 403:41-45.
-
(2000)
Nature
, vol.403
, pp. 41-45
-
-
Strahl, B.D.1
Allis, C.D.2
-
47
-
-
35848961668
-
How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers
-
Taverna S.D., et al. How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat. Struct. Mol. Biol. 2007, 14:1025-1040.
-
(2007)
Nat. Struct. Mol. Biol.
, vol.14
, pp. 1025-1040
-
-
Taverna, S.D.1
-
48
-
-
33745813187
-
Reading protein modifications with interaction domains
-
Seet B.T., et al. Reading protein modifications with interaction domains. Nat. Rev. Mol. Cell Biol. 2006, 7:473-483.
-
(2006)
Nat. Rev. Mol. Cell Biol.
, vol.7
, pp. 473-483
-
-
Seet, B.T.1
-
49
-
-
77951634725
-
Systems-wide proteomic characterization of combinatorial post-translational modification patterns
-
Young N.L., et al. Systems-wide proteomic characterization of combinatorial post-translational modification patterns. Expert Rev. Proteomics 2010, 7:79-92.
-
(2010)
Expert Rev. Proteomics
, vol.7
, pp. 79-92
-
-
Young, N.L.1
-
50
-
-
65349155149
-
Weak functional constraints on phosphoproteomes
-
Landry C.R., et al. Weak functional constraints on phosphoproteomes. Trends Genet. 2009, 25:193-197.
-
(2009)
Trends Genet.
, vol.25
, pp. 193-197
-
-
Landry, C.R.1
-
51
-
-
77951833317
-
High resolution electron transfer dissociation studies of unfractionated intact histones from murine embryonic stem cells using on-line capillary LC separation: determination of abundant histone isoforms and post-translational modifications
-
Eliuk S.M., et al. High resolution electron transfer dissociation studies of unfractionated intact histones from murine embryonic stem cells using on-line capillary LC separation: determination of abundant histone isoforms and post-translational modifications. Mol. Cell. Proteomics 2010, 9:824-837.
-
(2010)
Mol. Cell. Proteomics
, vol.9
, pp. 824-837
-
-
Eliuk, S.M.1
-
52
-
-
84864667383
-
Regulation of sirtuin function by posttranslational modifications
-
Flick F., Lüscher B. Regulation of sirtuin function by posttranslational modifications. Front. Pharmacol. 2012, 3:29.
-
(2012)
Front. Pharmacol.
, vol.3
, pp. 29
-
-
Flick, F.1
Lüscher, B.2
-
53
-
-
77952881796
-
Collective mass spectrometry approaches reveal broad and combinatorial modification of high mobility group protein A1a
-
Young N.L., et al. Collective mass spectrometry approaches reveal broad and combinatorial modification of high mobility group protein A1a. J. Am. Soc. Mass Spectrom. 2010, 21:960-970.
-
(2010)
J. Am. Soc. Mass Spectrom.
, vol.21
, pp. 960-970
-
-
Young, N.L.1
-
54
-
-
77951855269
-
Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36
-
Jung H.R., et al. Quantitative mass spectrometry of histones H3.2 and H3.3 in Suz12-deficient mouse embryonic stem cells reveals distinct, dynamic post-translational modifications at Lys-27 and Lys-36. Mol. Cell. Proteomics 2010, 9:838-850.
-
(2010)
Mol. Cell. Proteomics
, vol.9
, pp. 838-850
-
-
Jung, H.R.1
-
55
-
-
79959484677
-
Signals and combinatorial functions of histone modifications
-
Suganuma T., Workman J.L. Signals and combinatorial functions of histone modifications. Annu. Rev. Biochem. 2011, 80:473-499.
-
(2011)
Annu. Rev. Biochem.
, vol.80
, pp. 473-499
-
-
Suganuma, T.1
Workman, J.L.2
-
56
-
-
79961085477
-
Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR
-
Kato H., et al. Architecture of the high mobility group nucleosomal protein 2-nucleosome complex as revealed by methyl-based NMR. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:12283-12288.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 12283-12288
-
-
Kato, H.1
-
57
-
-
79953211917
-
Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK
-
Shang L.B., et al. Nutrient starvation elicits an acute autophagic response mediated by Ulk1 dephosphorylation and its subsequent dissociation from AMPK. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:4788-4793.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 4788-4793
-
-
Shang, L.B.1
-
58
-
-
44849098709
-
Simplifying a complex code
-
Turner B.M. Simplifying a complex code. Nat. Struct. Mol. Biol. 2008, 15:542-544.
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 542-544
-
-
Turner, B.M.1
-
59
-
-
80053441923
-
Dynamic protein-DNA recognition: beyond what can be seen
-
Fuxreiter M., et al. Dynamic protein-DNA recognition: beyond what can be seen. Trends Biochem. Sci. 2011, 36:415-423.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 415-423
-
-
Fuxreiter, M.1
-
60
-
-
0344936739
-
Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions
-
Radhakrishnan I., et al. Solution structure of the KIX domain of CBP bound to the transactivation domain of CREB: a model for activator:coactivator interactions. Cell 1997, 91:741-752.
-
(1997)
Cell
, vol.91
, pp. 741-752
-
-
Radhakrishnan, I.1
-
61
-
-
70349669271
-
Cooperative binding of two acetylation marks on a histone tail by a single bromodomain
-
Moriniere J., et al. Cooperative binding of two acetylation marks on a histone tail by a single bromodomain. Nature 2009, 461:664-668.
-
(2009)
Nature
, vol.461
, pp. 664-668
-
-
Moriniere, J.1
-
62
-
-
36749079110
-
Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification
-
Tsai K.L., et al. Crystal structure of the human FOXO3a-DBD/DNA complex suggests the effects of post-translational modification. Nucleic Acids Res. 2007, 35:6984-6994.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 6984-6994
-
-
Tsai, K.L.1
-
63
-
-
0030866897
-
Activation mechanism of the MAP kinase ERK2 by dual phosphorylation
-
Canagarajah B.J., et al. Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 1997, 90:859-869.
-
(1997)
Cell
, vol.90
, pp. 859-869
-
-
Canagarajah, B.J.1
-
64
-
-
1842861592
-
Structure, function and evolution of multidomain proteins
-
Vogel C., et al. Structure, function and evolution of multidomain proteins. Curr. Opin. Struct. Biol. 2004, 14:208-216.
-
(2004)
Curr. Opin. Struct. Biol.
, vol.14
, pp. 208-216
-
-
Vogel, C.1
-
65
-
-
70449769325
-
Protein-protein interaction networks: how can a hub protein bind so many different partners?
-
Tsai C.J., et al. Protein-protein interaction networks: how can a hub protein bind so many different partners?. Trends Biochem. Sci. 2009, 34:594-600.
-
(2009)
Trends Biochem. Sci.
, vol.34
, pp. 594-600
-
-
Tsai, C.J.1
-
66
-
-
58249086425
-
Understanding the words of chromatin regulation
-
Wu J.I., et al. Understanding the words of chromatin regulation. Cell 2009, 136:200-206.
-
(2009)
Cell
, vol.136
, pp. 200-206
-
-
Wu, J.I.1
-
67
-
-
68949101474
-
A combinatorial mechanism for determining the specificity of E2F activation and repression
-
Freedman J.A., et al. A combinatorial mechanism for determining the specificity of E2F activation and repression. Oncogene 2009, 28:2873-2881.
-
(2009)
Oncogene
, vol.28
, pp. 2873-2881
-
-
Freedman, J.A.1
-
68
-
-
75149141847
-
Mechanisms of transcription factor selectivity
-
Pan Y.P., et al. Mechanisms of transcription factor selectivity. Trends Genet. 2010, 26:75-83.
-
(2010)
Trends Genet.
, vol.26
, pp. 75-83
-
-
Pan, Y.P.1
-
70
-
-
79959856940
-
The role of response elements organization in transcription factor selectivity: the IFN-β enhanceosome example
-
Pan Y.P., Nussinov R. The role of response elements organization in transcription factor selectivity: the IFN-β enhanceosome example. PLoS Comput. Biol. 2011, 7:e1002077.
-
(2011)
PLoS Comput. Biol.
, vol.7
-
-
Pan, Y.P.1
Nussinov, R.2
-
71
-
-
75749101495
-
Chromatin remodelling during development
-
Ho L., Crabtree G.R. Chromatin remodelling during development. Nature 2010, 463:474-484.
-
(2010)
Nature
, vol.463
, pp. 474-484
-
-
Ho, L.1
Crabtree, G.R.2
-
72
-
-
82655179921
-
How do dynamic cellular signals travel long distances?
-
Nussinov R. How do dynamic cellular signals travel long distances?. Mol. Biosyst. 2011, 8:22-26.
-
(2011)
Mol. Biosyst.
, vol.8
, pp. 22-26
-
-
Nussinov, R.1
-
73
-
-
79960189344
-
Dynamic allostery: linkers are not merely flexible
-
Ma B., et al. Dynamic allostery: linkers are not merely flexible. Structure 2011, 19:907-917.
-
(2011)
Structure
, vol.19
, pp. 907-917
-
-
Ma, B.1
-
74
-
-
84857131975
-
Disordered proteins and network disorder in network representations of protein structure, dynamics and function
-
Csermely P., et al. Disordered proteins and network disorder in network representations of protein structure, dynamics and function. Curr. Protein Pept. Sci. 2011, 13:19-33.
-
(2011)
Curr. Protein Pept. Sci.
, vol.13
, pp. 19-33
-
-
Csermely, P.1
|