메뉴 건너뛰기




Volumn 37, Issue 9, 2012, Pages 373-380

The enigmatic reaction of flavins with oxygen

Author keywords

Biocatalysis; Flavin; Mechanism; Monooxygenase; Oxidase; Oxidative damage; Reactive oxygen species

Indexed keywords

4 HYDROXYBENZOATE 3 MONOOXYGENASE; ALANINE; DIHYDROOROTATE DEHYDROGENASE; FLAVINE ADENINE NUCLEOTIDE; FLAVINE MONONUCLEOTIDE; FLAVINE MONONUCLEOTIDE REDUCTASE; FLAVOPROTEIN; GLYCINE; OXIDOREDUCTASE; OXYGEN; PHENYLALANINE; PYRANOSE 2 OXIDASE; REACTIVE OXYGEN METABOLITE; SARCOSINE OXIDASE; TRYPTOPHAN; UNCLASSIFIED DRUG; UNSPECIFIC MONOOXYGENASE;

EID: 84865435786     PISSN: 09680004     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.tibs.2012.06.005     Document Type: Review
Times cited : (198)

References (63)
  • 2
    • 75749136883 scopus 로고    scopus 로고
    • Signaling functions of reactive oxygen species
    • Forman H.J., et al. Signaling functions of reactive oxygen species. Biochemistry 2010, 49:835-842.
    • (2010) Biochemistry , vol.49 , pp. 835-842
    • Forman, H.J.1
  • 3
    • 79957890939 scopus 로고    scopus 로고
    • Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets
    • Drummond G.R., et al. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat. Rev. Drug Discov. 2011, 10:453-471.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 453-471
    • Drummond, G.R.1
  • 4
    • 79955977892 scopus 로고    scopus 로고
    • Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer
    • Pryde K.R., Hirst J. Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J. Biol. Chem. 2011, 286:18056-18065.
    • (2011) J. Biol. Chem. , vol.286 , pp. 18056-18065
    • Pryde, K.R.1    Hirst, J.2
  • 5
    • 84855869138 scopus 로고    scopus 로고
    • Molecular insights into human monoamine oxidase B inhibition by the glitazone antidiabetes drugs
    • Binda C., et al. Molecular insights into human monoamine oxidase B inhibition by the glitazone antidiabetes drugs. ACS Med. Chem. Lett. 2012, 3:39-42.
    • (2012) ACS Med. Chem. Lett. , vol.3 , pp. 39-42
    • Binda, C.1
  • 6
    • 77952355653 scopus 로고    scopus 로고
    • Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2
    • Binda C., et al. Biochemical, structural, and biological evaluation of tranylcypromine derivatives as inhibitors of histone demethylases LSD1 and LSD2. J. Am. Chem. Soc. 2010, 132:6827-6833.
    • (2010) J. Am. Chem. Soc. , vol.132 , pp. 6827-6833
    • Binda, C.1
  • 7
    • 65649096556 scopus 로고    scopus 로고
    • Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis
    • Makarov V., et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 2009, 324:801-804.
    • (2009) Science , vol.324 , pp. 801-804
    • Makarov, V.1
  • 9
    • 77949897676 scopus 로고    scopus 로고
    • Baeyer-Villiger monooxygenases: recent advances and future challenges
    • Torres Pazmiño D.E., et al. Baeyer-Villiger monooxygenases: recent advances and future challenges. Curr. Opin. Chem. Biol. 2010, 14:138-144.
    • (2010) Curr. Opin. Chem. Biol. , vol.14 , pp. 138-144
    • Torres Pazmiño, D.E.1
  • 10
    • 80052794668 scopus 로고    scopus 로고
    • Catalytic and structural features of flavoprotein hydroxylases and epoxidases
    • Montersino S., et al. Catalytic and structural features of flavoprotein hydroxylases and epoxidases. Adv. Synth. Catal. 2011, 353:2301-2319.
    • (2011) Adv. Synth. Catal. , vol.353 , pp. 2301-2319
    • Montersino, S.1
  • 11
    • 77349127553 scopus 로고    scopus 로고
    • Monooxygenases as biocatalysts: classification, mechanistic aspects and biotechnological applications
    • Torres Pazmino D.E., et al. Monooxygenases as biocatalysts: classification, mechanistic aspects and biotechnological applications. J. Biotechnol. 2010, 146:9-24.
    • (2010) J. Biotechnol. , vol.146 , pp. 9-24
    • Torres Pazmino, D.E.1
  • 12
    • 0028108347 scopus 로고
    • Activation of molecular oxygen by flavins and flavoprotein
    • Massey V. Activation of molecular oxygen by flavins and flavoprotein. J. Biol. Chem. 1994, 269:22459-22462.
    • (1994) J. Biol. Chem. , vol.269 , pp. 22459-22462
    • Massey, V.1
  • 13
    • 33646348711 scopus 로고    scopus 로고
    • To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes
    • Mattevi A. To be or not to be an oxidase: challenging the oxygen reactivity of flavoenzymes. Trends Biochem. Sci. 2006, 31:276-283.
    • (2006) Trends Biochem. Sci. , vol.31 , pp. 276-283
    • Mattevi, A.1
  • 14
    • 0021093567 scopus 로고
    • The chemistry of a 1,5-diblocked flavin. 2. Proton and electron transfer steps in the reaction of dihydroflavins with oxygen
    • Eberlein G., Bruice T.C. The chemistry of a 1,5-diblocked flavin. 2. Proton and electron transfer steps in the reaction of dihydroflavins with oxygen. J. Am. Chem. Soc. 1983, 105:6685-6697.
    • (1983) J. Am. Chem. Soc. , vol.105 , pp. 6685-6697
    • Eberlein, G.1    Bruice, T.C.2
  • 15
    • 78650858458 scopus 로고    scopus 로고
    • Stabilization of an intermediate in the oxidative half-reaction of human liver glycolate oxidase
    • Pennati A., Gadda G. Stabilization of an intermediate in the oxidative half-reaction of human liver glycolate oxidase. Biochemistry 2011, 50:1-3.
    • (2011) Biochemistry , vol.50 , pp. 1-3
    • Pennati, A.1    Gadda, G.2
  • 16
    • 34447638717 scopus 로고    scopus 로고
    • How do enzymes activate oxygen without inactivating themselves?
    • Klinman J.P. How do enzymes activate oxygen without inactivating themselves?. Acc. Chem. Res. 2007, 40:325-333.
    • (2007) Acc. Chem. Res. , vol.40 , pp. 325-333
    • Klinman, J.P.1
  • 17
    • 79959237023 scopus 로고    scopus 로고
    • Probing oxygen activation sites in two flavoprotein oxidases: using chloride as an oxygen surrogate
    • Kommoju P.-R., et al. Probing oxygen activation sites in two flavoprotein oxidases: using chloride as an oxygen surrogate. Biochemistry 2011, 50:5521-5534.
    • (2011) Biochemistry , vol.50 , pp. 5521-5534
    • Kommoju, P.-R.1
  • 18
    • 77951698123 scopus 로고    scopus 로고
    • Structural characterization of mutations at the oxygen activation site in monomeric sarcosine oxidase
    • Jorns M.S., et al. Structural characterization of mutations at the oxygen activation site in monomeric sarcosine oxidase. Biochemistry 2010, 49:3631-3639.
    • (2010) Biochemistry , vol.49 , pp. 3631-3639
    • Jorns, M.S.1
  • 19
    • 50849101652 scopus 로고    scopus 로고
    • Identification of the oxygen activation site in monomeric sarcosine oxidase: role of lys265 in catalysis
    • Zhao G., et al. Identification of the oxygen activation site in monomeric sarcosine oxidase: role of lys265 in catalysis. Biochemistry 2008, 47:9124-9135.
    • (2008) Biochemistry , vol.47 , pp. 9124-9135
    • Zhao, G.1
  • 20
    • 79958065906 scopus 로고    scopus 로고
    • Pleiotropic impact of a single lysine mutation on biosynthesis of and catalysis by N-methyltryptophan oxidase
    • Bruckner R.C., et al. Pleiotropic impact of a single lysine mutation on biosynthesis of and catalysis by N-methyltryptophan oxidase. Biochemistry 2011, 50:4949-4962.
    • (2011) Biochemistry , vol.50 , pp. 4949-4962
    • Bruckner, R.C.1
  • 21
    • 80055024863 scopus 로고    scopus 로고
    • Oxygen reactivity in flavoenzymes: context matters
    • McDonald C.A., et al. Oxygen reactivity in flavoenzymes: context matters. J. Am. Chem. Soc. 2011, 133:16809-16811.
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 16809-16811
    • McDonald, C.A.1
  • 22
    • 84859376000 scopus 로고    scopus 로고
    • Oxygen activation in flavoprotein oxidases: the importance of being positive
    • Gadda G. Oxygen activation in flavoprotein oxidases: the importance of being positive. Biochemistry 2012, 51:2662-2669.
    • (2012) Biochemistry , vol.51 , pp. 2662-2669
    • Gadda, G.1
  • 23
    • 77953538248 scopus 로고    scopus 로고
    • A lysine conserved in the monoamine oxidase family is involved in oxidation of the reduced flavin in mouse polyamine oxidase
    • Pozzi M.H., Fitzpatrick P.F. A lysine conserved in the monoamine oxidase family is involved in oxidation of the reduced flavin in mouse polyamine oxidase. Arch. Biochem. Biophys. 2010, 498:83-88.
    • (2010) Arch. Biochem. Biophys. , vol.498 , pp. 83-88
    • Pozzi, M.H.1    Fitzpatrick, P.F.2
  • 24
    • 70549103613 scopus 로고    scopus 로고
    • The oxygen-binding vs. oxygen-consuming paradigm in biocatalysis: structural biology and biomolecular simulation
    • Baron R., et al. The oxygen-binding vs. oxygen-consuming paradigm in biocatalysis: structural biology and biomolecular simulation. Curr. Opin. Struct. Biol. 2009, 19:672-679.
    • (2009) Curr. Opin. Struct. Biol. , vol.19 , pp. 672-679
    • Baron, R.1
  • 25
    • 67649819680 scopus 로고    scopus 로고
    • Multiple pathways guide oxygen diffusion into flavoenzyme active sites
    • Baron R., et al. Multiple pathways guide oxygen diffusion into flavoenzyme active sites. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:10603-10608.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 10603-10608
    • Baron, R.1
  • 26
    • 77955288875 scopus 로고    scopus 로고
    • 2 reactivity of flavoproteins: dynamic access of dioxygen to the active site and role of a H+ relay system in D-amino acid oxidase
    • 2 reactivity of flavoproteins: dynamic access of dioxygen to the active site and role of a H+ relay system in D-amino acid oxidase. J. Biol. Chem. 2010, 285:24439-24446.
    • (2010) J. Biol. Chem. , vol.285 , pp. 24439-24446
    • Saam, J.1
  • 27
    • 79551718687 scopus 로고    scopus 로고
    • Molecular mimicry and ligand recognition in binding and catalysis by the histone demethylase LSD1-CoREST complex
    • Baron R., et al. Molecular mimicry and ligand recognition in binding and catalysis by the histone demethylase LSD1-CoREST complex. Structure 2011, 19:212-220.
    • (2011) Structure , vol.19 , pp. 212-220
    • Baron, R.1
  • 28
    • 63249113097 scopus 로고    scopus 로고
    • Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases
    • Leferink N.G., et al. Identification of a gatekeeper residue that prevents dehydrogenases from acting as oxidases. J. Biol. Chem. 2009, 284:4392-4397.
    • (2009) J. Biol. Chem. , vol.284 , pp. 4392-4397
    • Leferink, N.G.1
  • 29
    • 81755181712 scopus 로고    scopus 로고
    • 2 reactivity in a fungal flavoenzyme: involvement of aryl-alcohol oxidase Phe-501 contiguous to catalytic histidine
    • 2 reactivity in a fungal flavoenzyme: involvement of aryl-alcohol oxidase Phe-501 contiguous to catalytic histidine. J. Biol. Chem. 2011, 286:41105-41114.
    • (2011) J. Biol. Chem. , vol.286 , pp. 41105-41114
    • Hernández Ortega, A.1
  • 30
    • 77950407407 scopus 로고    scopus 로고
    • Role of valine 464 in the flavin oxidation reaction catalyzed by choline oxidase
    • Finnegan S., et al. Role of valine 464 in the flavin oxidation reaction catalyzed by choline oxidase. Biochemistry 2010, 49:2952-2961.
    • (2010) Biochemistry , vol.49 , pp. 2952-2961
    • Finnegan, S.1
  • 31
    • 77952545697 scopus 로고    scopus 로고
    • The FMN-dependent two-component monooxygenase systems
    • Ellis H.R. The FMN-dependent two-component monooxygenase systems. Arch. Biochem. Biophys. 2010, 497:1-12.
    • (2010) Arch. Biochem. Biophys. , vol.497 , pp. 1-12
    • Ellis, H.R.1
  • 32
    • 79952092735 scopus 로고    scopus 로고
    • Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase
    • Kantz A., Gassner G.T. Nature of the reaction intermediates in the flavin adenine dinucleotide-dependent epoxidation mechanism of styrene monooxygenase. Biochemistry 2011, 50:523-532.
    • (2011) Biochemistry , vol.50 , pp. 523-532
    • Kantz, A.1    Gassner, G.T.2
  • 33
    • 78650947225 scopus 로고    scopus 로고
    • PH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase
    • Ruangchan N., et al. pH-dependent studies reveal an efficient hydroxylation mechanism of the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase. J. Biol. Chem. 2010, 286:223-233.
    • (2010) J. Biol. Chem. , vol.286 , pp. 223-233
    • Ruangchan, N.1
  • 34
    • 75349094072 scopus 로고    scopus 로고
    • Studies on the mechanism of p-hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa: a system composed of a small flavin reductase and a large flavin-dependent oxygenase
    • Chakraborty S., et al. Studies on the mechanism of p-hydroxyphenylacetate 3-hydroxylase from Pseudomonas aeruginosa: a system composed of a small flavin reductase and a large flavin-dependent oxygenase. Biochemistry 2010, 49:372-385.
    • (2010) Biochemistry , vol.49 , pp. 372-385
    • Chakraborty, S.1
  • 35
    • 33846842522 scopus 로고    scopus 로고
    • Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases
    • Yeh E., et al. Chlorination by a long-lived intermediate in the mechanism of flavin-dependent halogenases. Biochemistry 2007, 46:1284-1292.
    • (2007) Biochemistry , vol.46 , pp. 1284-1292
    • Yeh, E.1
  • 36
    • 84455161802 scopus 로고    scopus 로고
    • Interactions with the substrate phenolic group are essential for hydroxylation by the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase
    • Tongsook C., et al. Interactions with the substrate phenolic group are essential for hydroxylation by the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase. J. Biol. Chem. 2011, 286:44491-44502.
    • (2011) J. Biol. Chem. , vol.286 , pp. 44491-44502
    • Tongsook, C.1
  • 37
    • 80051480273 scopus 로고    scopus 로고
    • Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms
    • Thotsaporn K., et al. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms. J. Biol. Chem. 2011, 286:28170-28180.
    • (2011) J. Biol. Chem. , vol.286 , pp. 28170-28180
    • Thotsaporn, K.1
  • 38
    • 33846598098 scopus 로고    scopus 로고
    • Structure of the monooxygenase component of a two-component flavoprotein monooxygenase
    • Alfieri A., et al. Structure of the monooxygenase component of a two-component flavoprotein monooxygenase. Proc. Natl. Acad. Sci. U.S.A. 2007, 104:1177-1182.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 1177-1182
    • Alfieri, A.1
  • 39
    • 36348950818 scopus 로고    scopus 로고
    • Crystal structure of the oxygenase component (HpaB) of the 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8
    • Kim S.H., et al. Crystal structure of the oxygenase component (HpaB) of the 4-hydroxyphenylacetate 3-monooxygenase from Thermus thermophilus HB8. J. Biol. Chem. 2007, 282:33107-33117.
    • (2007) J. Biol. Chem. , vol.282 , pp. 33107-33117
    • Kim, S.H.1
  • 40
    • 76249124150 scopus 로고    scopus 로고
    • Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100
    • Webb B.N., et al. Characterization of chlorophenol 4-monooxygenase (TftD) and NADH:FAD oxidoreductase (TftC) of Burkholderia cepacia AC1100. J. Biol. Chem. 2010, 285:2014-2027.
    • (2010) J. Biol. Chem. , vol.285 , pp. 2014-2027
    • Webb, B.N.1
  • 41
    • 77954575769 scopus 로고    scopus 로고
    • A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism
    • Dresen C., et al. A flavin-dependent monooxygenase from Mycobacterium tuberculosis involved in cholesterol catabolism. J. Biol. Chem. 2010, 285:22264-22275.
    • (2010) J. Biol. Chem. , vol.285 , pp. 22264-22275
    • Dresen, C.1
  • 42
    • 44349089600 scopus 로고    scopus 로고
    • Revealing the moonlighting role of NADP in the structure of a flavin-containing monooxygenase
    • Alfieri A., et al. Revealing the moonlighting role of NADP in the structure of a flavin-containing monooxygenase. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:6572-6577.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 6572-6577
    • Alfieri, A.1
  • 43
    • 80053571691 scopus 로고    scopus 로고
    • Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases
    • Olucha J., Lamb A.L. Mechanistic and structural studies of the N-hydroxylating flavoprotein monooxygenases. Bioorg. Chem. 2011, 39:171-177.
    • (2011) Bioorg. Chem. , vol.39 , pp. 171-177
    • Olucha, J.1    Lamb, A.L.2
  • 44
    • 80051703580 scopus 로고    scopus 로고
    • Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization
    • Orru R., et al. Snapshots of enzymatic Baeyer-Villiger catalysis: oxygen activation and intermediate stabilization. J. Biol. Chem. 2011, 286:29284-29291.
    • (2011) J. Biol. Chem. , vol.286 , pp. 29284-29291
    • Orru, R.1
  • 45
    • 80052395555 scopus 로고    scopus 로고
    • Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa
    • Olucha J., et al. Two structures of an N-hydroxylating flavoprotein monooxygenase: ornithine hydroxylase from Pseudomonas aeruginosa. J. Biol. Chem. 2011, 286:31789-31798.
    • (2011) J. Biol. Chem. , vol.286 , pp. 31789-31798
    • Olucha, J.1
  • 46
    • 78049408210 scopus 로고    scopus 로고
    • Joint functions of protein residues and NADP(H) in oxygen activation by flavin-containing monooxygenase
    • Orru R., et al. Joint functions of protein residues and NADP(H) in oxygen activation by flavin-containing monooxygenase. J. Biol. Chem. 2010, 285:35021-35028.
    • (2010) J. Biol. Chem. , vol.285 , pp. 35021-35028
    • Orru, R.1
  • 47
    • 67649607265 scopus 로고    scopus 로고
    • Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor
    • Mirza I.A., et al. Crystal structures of cyclohexanone monooxygenase reveal complex domain movements and a sliding cofactor. J. Am. Chem. Soc. 2009, 131:8848-8854.
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 8848-8854
    • Mirza, I.A.1
  • 48
    • 72049124811 scopus 로고    scopus 로고
    • Control of catalysis in flavin-dependent monooxygenases
    • Palfey B.A., McDonald C.A. Control of catalysis in flavin-dependent monooxygenases. Arch. Biochem. Biophys. 2010, 493:26-36.
    • (2010) Arch. Biochem. Biophys. , vol.493 , pp. 26-36
    • Palfey, B.A.1    McDonald, C.A.2
  • 49
    • 72049128879 scopus 로고    scopus 로고
    • Flavoenzymes catalyzing oxidative aromatic ring-cleavage reactions
    • Chaiyen P. Flavoenzymes catalyzing oxidative aromatic ring-cleavage reactions. Arch. Biochem. Biophys. 2010, 493:62-70.
    • (2010) Arch. Biochem. Biophys. , vol.493 , pp. 62-70
    • Chaiyen, P.1
  • 50
    • 9744270010 scopus 로고    scopus 로고
    • Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase
    • Entsch B., et al. Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Arch. Biochem. Biophys. 2005, 433:297-311.
    • (2005) Arch. Biochem. Biophys. , vol.433 , pp. 297-311
    • Entsch, B.1
  • 51
    • 66049102551 scopus 로고    scopus 로고
    • Structure of the PLP degradative enzyme 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase from Mesorhizobium loti MAFF303099 and its mechanistic implications
    • McCulloch K.M., et al. Structure of the PLP degradative enzyme 2-methyl-3-hydroxypyridine-5-carboxylic acid oxygenase from Mesorhizobium loti MAFF303099 and its mechanistic implications. Biochemistry 2009, 48:4139-4149.
    • (2009) Biochemistry , vol.48 , pp. 4139-4149
    • McCulloch, K.M.1
  • 52
    • 58149144734 scopus 로고    scopus 로고
    • The FAD cofactor of RebC shifts to an IN conformation upon flavin reduction
    • Ryan K.S., et al. The FAD cofactor of RebC shifts to an IN conformation upon flavin reduction. Biochemistry 2008, 47:13506-13513.
    • (2008) Biochemistry , vol.47 , pp. 13506-13513
    • Ryan, K.S.1
  • 53
    • 66049142616 scopus 로고    scopus 로고
    • Kinetic mechanism of pyranose 2-oxidase from trametes multicolor
    • Prongjit M., et al. Kinetic mechanism of pyranose 2-oxidase from trametes multicolor. Biochemistry 2009, 48:4170-4180.
    • (2009) Biochemistry , vol.48 , pp. 4170-4180
    • Prongjit, M.1
  • 54
    • 81555196346 scopus 로고    scopus 로고
    • Identification of a catalytic base for sugar oxidation in the pyranose 2-oxidase reaction
    • Wongnate T., et al. Identification of a catalytic base for sugar oxidation in the pyranose 2-oxidase reaction. Chembiochem 2011, 12:2577-2586.
    • (2011) Chembiochem , vol.12 , pp. 2577-2586
    • Wongnate, T.1
  • 55
    • 49749144875 scopus 로고    scopus 로고
    • Detection of a C4a-hydroperoxyflavin intermediate in the reaction of a flavoprotein oxidase
    • Sucharitakul J., et al. Detection of a C4a-hydroperoxyflavin intermediate in the reaction of a flavoprotein oxidase. Biochemistry 2008, 47:8485-8490.
    • (2008) Biochemistry , vol.47 , pp. 8485-8490
    • Sucharitakul, J.1
  • 56
    • 77951245033 scopus 로고    scopus 로고
    • A conserved active-site threonine is important for both sugar and flavin oxidations of pyranose 2-oxidase
    • Pitsawong W., et al. A conserved active-site threonine is important for both sugar and flavin oxidations of pyranose 2-oxidase. J. Biol. Chem. 2010, 285:9697-9705.
    • (2010) J. Biol. Chem. , vol.285 , pp. 9697-9705
    • Pitsawong, W.1
  • 57
    • 77956915511 scopus 로고    scopus 로고
    • H-Bonding and positive charge at the N(5)/O(4) locus are critical for covalent flavin attachment in trametes pyranose 2-oxidase
    • Tan T.-C., et al. H-Bonding and positive charge at the N(5)/O(4) locus are critical for covalent flavin attachment in trametes pyranose 2-oxidase. J. Mol. Biol. 2010, 402:578-594.
    • (2010) J. Mol. Biol. , vol.402 , pp. 578-594
    • Tan, T.-C.1
  • 58
    • 77951683048 scopus 로고    scopus 로고
    • Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism
    • Sucharitakul J., et al. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism. Biochemistry 2010, 49:3753-3765.
    • (2010) Biochemistry , vol.49 , pp. 3753-3765
    • Sucharitakul, J.1
  • 59
    • 79955750085 scopus 로고    scopus 로고
    • Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group
    • Sucharitakul J., et al. Hydrogen peroxide elimination from C4a-hydroperoxyflavin in a flavoprotein oxidase occurs through a single proton transfer from flavin N5 to a peroxide leaving group. J. Biol. Chem. 2011, 286:16900-16909.
    • (2011) J. Biol. Chem. , vol.286 , pp. 16900-16909
    • Sucharitakul, J.1
  • 60
    • 0025332076 scopus 로고
    • Analysis of the active site of the flavoprotein p-hydroxybenzoate hydroxylase and some ideas with respect to its reaction mechanism
    • Schreuder H.A., et al. Analysis of the active site of the flavoprotein p-hydroxybenzoate hydroxylase and some ideas with respect to its reaction mechanism. Biochemistry 1990, 29:3101-3108.
    • (1990) Biochemistry , vol.29 , pp. 3101-3108
    • Schreuder, H.A.1
  • 61
    • 84863044213 scopus 로고    scopus 로고
    • Flavin-linked Erv-family sulfhydryl oxidases release superoxide anion during catalytic turnover
    • Daithankar V.N., et al. Flavin-linked Erv-family sulfhydryl oxidases release superoxide anion during catalytic turnover. Biochemistry 2012, 51:265-272.
    • (2012) Biochemistry , vol.51 , pp. 265-272
    • Daithankar, V.N.1
  • 62
    • 36049016125 scopus 로고    scopus 로고
    • Flavocytochrome b2: reactivity of its flavin with molecular oxygen
    • Boubacar A.K.O., et al. Flavocytochrome b2: reactivity of its flavin with molecular oxygen. Biochemistry 2007, 46:13080-13088.
    • (2007) Biochemistry , vol.46 , pp. 13080-13088
    • Boubacar, A.K.O.1
  • 63
    • 84860197665 scopus 로고    scopus 로고
    • Investigation of the pH-dependent electron transfer mechanism of ascomycetous class II cellobiose dehydrogenases on electrodes
    • Harreither W., et al. Investigation of the pH-dependent electron transfer mechanism of ascomycetous class II cellobiose dehydrogenases on electrodes. Langmuir 2012, 28:6714-6723.
    • (2012) Langmuir , vol.28 , pp. 6714-6723
    • Harreither, W.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.