메뉴 건너뛰기




Volumn 97, Issue , 2012, Pages 332-343

Integrating a differential evolution feature weighting scheme into prototype generation

Author keywords

Classification; Differential evolution; Feature weighting; Nearest neighbor; Prototype generation; Prototype selection

Indexed keywords

DIFFERENTIAL EVOLUTION; FEATURE WEIGHTING; NEAREST NEIGHBORS; PROTOTYPE GENERATIONS; PROTOTYPE SELECTION;

EID: 84865330252     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2012.06.009     Document Type: Article
Times cited : (19)

References (64)
  • 4
    • 0004267735 scopus 로고    scopus 로고
    • Springer, D.W. Aha (Ed.)
    • Lazy Learning 1997, Springer. D.W. Aha (Ed.).
    • (1997) Lazy Learning
  • 5
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • Cover T.M., Hart P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13(1):21-27.
    • (1967) IEEE Trans. Inf. Theory , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.M.1    Hart, P.E.2
  • 6
    • 84944611438 scopus 로고    scopus 로고
    • Chapman & Hall/CRC Data Mining and Knowledge Discovery, X. Wu, V. Kumar (Eds.)
    • The Top Ten Algorithms in Data Mining 2009, Chapman & Hall/CRC Data Mining and Knowledge Discovery. X. Wu, V. Kumar (Eds.).
    • (2009) The Top Ten Algorithms in Data Mining
  • 7
    • 78649915712 scopus 로고    scopus 로고
    • Edited AdaBoost by weighted kNN
    • Gao Y., Gao F. Edited AdaBoost by weighted kNN. Neurocomputing 2010, 73(16-18):3079-3088.
    • (2010) Neurocomputing , vol.73 , Issue.16-18 , pp. 3079-3088
    • Gao, Y.1    Gao, F.2
  • 8
    • 76749096459 scopus 로고    scopus 로고
    • IFS-CoCo: instance and feature selection based on cooperative coevolution with nearest neighbor rule
    • Derrac J., García S., Herrera F. IFS-CoCo: instance and feature selection based on cooperative coevolution with nearest neighbor rule. Pattern Recognition 2010, 43(6):2082-2105.
    • (2010) Pattern Recognition , vol.43 , Issue.6 , pp. 2082-2105
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 10
    • 80051602199 scopus 로고    scopus 로고
    • Method for prediction of protein-protein interactions in yeast using genomics/proteomics information and feature selection
    • Urquiza J.M., Rojas I., Pomares H., Herrera L.J., Ortega J., Prieto A. Method for prediction of protein-protein interactions in yeast using genomics/proteomics information and feature selection. Neurocomputing 2011, 74(16):2683-2690.
    • (2011) Neurocomputing , vol.74 , Issue.16 , pp. 2683-2690
    • Urquiza, J.M.1    Rojas, I.2    Pomares, H.3    Herrera, L.J.4    Ortega, J.5    Prieto, A.6
  • 12
    • 80052932946 scopus 로고    scopus 로고
    • An efficient feature selection method for mobile devices with application to activity recognition
    • Peng J.X., Ferguson S., Rafferty K., Kelly P. An efficient feature selection method for mobile devices with application to activity recognition. Neurocomputing 2011, 74(17):3543-3552.
    • (2011) Neurocomputing , vol.74 , Issue.17 , pp. 3543-3552
    • Peng, J.X.1    Ferguson, S.2    Rafferty, K.3    Kelly, P.4
  • 13
    • 81355127279 scopus 로고    scopus 로고
    • Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection
    • Derrac J., Cornelis C., García S., Herrera F. Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection. Inf. Sci. 2012, 186(1):73-92.
    • (2012) Inf. Sci. , vol.186 , Issue.1 , pp. 73-92
    • Derrac, J.1    Cornelis, C.2    García, S.3    Herrera, F.4
  • 15
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson D.R., Martinez T.R. Reduction techniques for instance-based learning algorithms. Mach. Learn. 2000, 38(3):257-286.
    • (2000) Mach. Learn. , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 16
    • 77952551790 scopus 로고    scopus 로고
    • New method for instance or prototype selection using mutual information in time series prediction
    • Guillén A., Herrera L.J., Rubio G., Pomares H., Lendasse A., Rojas I. New method for instance or prototype selection using mutual information in time series prediction. Neurocomputing 2010, 73(10-12):2030-2038.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 2030-2038
    • Guillén, A.1    Herrera, L.J.2    Rubio, G.3    Pomares, H.4    Lendasse, A.5    Rojas, I.6
  • 17
    • 84856161441 scopus 로고    scopus 로고
    • Prototype selection for nearest neighbor classification: taxonomy and empirical study
    • García S., Derrac J., Cano J., Herrera F. Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(3):417-435.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.3 , pp. 417-435
    • García, S.1    Derrac, J.2    Cano, J.3    Herrera, F.4
  • 18
    • 33846316693 scopus 로고    scopus 로고
    • Self-generating prototypes for pattern classification
    • Fayed H.A., Hashem S.R., Atiya A.F. Self-generating prototypes for pattern classification. Pattern Recognition 2007, 40(5):1498-1509.
    • (2007) Pattern Recognition , vol.40 , Issue.5 , pp. 1498-1509
    • Fayed, H.A.1    Hashem, S.R.2    Atiya, A.F.3
  • 20
    • 0031073477 scopus 로고    scopus 로고
    • A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
    • Wettschereck D., Aha D.W., Mohri T. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 1997, 11:273-314.
    • (1997) Artif. Intell. Rev. , vol.11 , pp. 273-314
    • Wettschereck, D.1    Aha, D.W.2    Mohri, T.3
  • 21
    • 33746412073 scopus 로고    scopus 로고
    • Learning weighted metrics to minimize nearest-neighbor classification error
    • Paredes R., Vidal E. Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28(7):1100-1110.
    • (2006) IEEE Trans. Pattern Anal. Mach. Intell. , vol.28 , Issue.7 , pp. 1100-1110
    • Paredes, R.1    Vidal, E.2
  • 25
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study
    • Cano J.R., Herrera F., Lozano M. Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Trans. Evol. Comput. 2003, 7(6):561-575.
    • (2003) IEEE Trans. Evol. Comput. , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 26
    • 27344452492 scopus 로고    scopus 로고
    • A tutorial for competent memetic algorithms: model, taxonomy, and design issues
    • Krasnogor N., Smith J. A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans. Evol. Comput. 2005, 9(5):474-488.
    • (2005) IEEE Trans. Evol. Comput. , vol.9 , Issue.5 , pp. 474-488
    • Krasnogor, N.1    Smith, J.2
  • 27
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection: a scaling up approach
    • García S., Cano J.R., Herrera F. A memetic algorithm for evolutionary prototype selection: a scaling up approach. Pattern Recognition 2008, 41(8):2693-2709.
    • (2008) Pattern Recognition , vol.41 , Issue.8 , pp. 2693-2709
    • García, S.1    Cano, J.R.2    Herrera, F.3
  • 28
    • 3142672346 scopus 로고    scopus 로고
    • Evolutionary design of nearest prototype classifiers
    • Fernández F., Isasi P. Evolutionary design of nearest prototype classifiers. J. Heuristics 2004, 10(4):431-454.
    • (2004) J. Heuristics , vol.10 , Issue.4 , pp. 431-454
    • Fernández, F.1    Isasi, P.2
  • 30
    • 58149475488 scopus 로고    scopus 로고
    • Particle swarm optimization for prototype reduction
    • Nanni L., Lumini A. Particle swarm optimization for prototype reduction. Neurocomputing 2008, 72(4-6):1092-1097.
    • (2008) Neurocomputing , vol.72 , Issue.4-6 , pp. 1092-1097
    • Nanni, L.1    Lumini, A.2
  • 31
    • 0142000477 scopus 로고    scopus 로고
    • Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
    • Storn R., Price K.V. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 1997, 11(10):341-359.
    • (1997) J. Global Optim. , vol.11 , Issue.10 , pp. 341-359
    • Storn, R.1    Price, K.V.2
  • 33
    • 79952003251 scopus 로고    scopus 로고
    • Differential evolution: a survey of the state-of-the-art
    • Das S., Suganthan P. Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011, 15(1):4-31.
    • (2011) IEEE Trans. Evol. Comput. , vol.15 , Issue.1 , pp. 4-31
    • Das, S.1    Suganthan, P.2
  • 34
    • 78650282967 scopus 로고    scopus 로고
    • Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification
    • Triguero I., García S., Herrera F. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 2011, 44(4):901-916.
    • (2011) Pattern Recognition , vol.44 , Issue.4 , pp. 901-916
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 35
    • 39549117816 scopus 로고    scopus 로고
    • Local feature weighting in nearest prototype classification
    • Fernández F., Isasi P. Local feature weighting in nearest prototype classification. IEEE Trans. Neural Networks 2008, 19(1):40-53.
    • (2008) IEEE Trans. Neural Networks , vol.19 , Issue.1 , pp. 40-53
    • Fernández, F.1    Isasi, P.2
  • 37
    • 78650064965 scopus 로고    scopus 로고
    • IPADE: iterative prototype adjustment for nearest neighbor classification
    • Triguero I., García S., Herrera F. IPADE: iterative prototype adjustment for nearest neighbor classification. IEEE Trans. Neural Networks 2010, 21(12):1984-1990.
    • (2010) IEEE Trans. Neural Networks , vol.21 , Issue.12 , pp. 1984-1990
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 39
    • 17444379003 scopus 로고    scopus 로고
    • Stratification for scaling up evolutionary prototype selection
    • Cano J.R., Herrera F., Lozano M. Stratification for scaling up evolutionary prototype selection. Pattern Recognition Lett. 2005, 26(7):953-963.
    • (2005) Pattern Recognition Lett. , vol.26 , Issue.7 , pp. 953-963
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 41
    • 65649109765 scopus 로고    scopus 로고
    • Scale factor local search in differential evolution
    • Neri F., Tirronen V. Scale factor local search in differential evolution. Memetic Comput. 2009, 1(2):153-171.
    • (2009) Memetic Comput. , vol.1 , Issue.2 , pp. 153-171
    • Neri, F.1    Tirronen, V.2
  • 42
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
    • García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 2010, 180:2044-2064.
    • (2010) Inf. Sci. , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 43
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • Hart P.E. The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 1968, 18:515-516.
    • (1968) IEEE Trans. Inf. Theory , vol.18 , pp. 515-516
    • Hart, P.E.1
  • 44
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 1972, 2(3):408-421.
    • (1972) IEEE Trans. Syst. Man Cybern. , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.L.1
  • 46
    • 18144451785 scopus 로고    scopus 로고
    • High training set size reduction by space partitioning and prototype abstraction
    • Sánchez J.S. High training set size reduction by space partitioning and prototype abstraction. Pattern Recognition 2004, 37(7):1561-1564.
    • (2004) Pattern Recognition , vol.37 , Issue.7 , pp. 1561-1564
    • Sánchez, J.S.1
  • 47
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • Aha D.W., Kibler D., Albert M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6(1):37-66.
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.W.1    Kibler, D.2    Albert, M.K.3
  • 49
    • 37549049756 scopus 로고    scopus 로고
    • Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a machine learning approach for feature weighting
    • Ye K., Feenstra K., Heringa J., Ijzerman A., Marchiori E. Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a machine learning approach for feature weighting. Bioinformatics 2008, 24(1):18-25.
    • (2008) Bioinformatics , vol.24 , Issue.1 , pp. 18-25
    • Ye, K.1    Feenstra, K.2    Heringa, J.3    Ijzerman, A.4    Marchiori, E.5
  • 50
    • 84992726552 scopus 로고
    • Estimating attributes: analysis and extensions of RELIEF
    • Springer Verlag, Catania, Italy
    • I. Kononenko, Estimating attributes: analysis and extensions of RELIEF, in: Proceedings of the 1994 European Conference on Machine Learning, Springer Verlag, Catania, Italy, 1994, pp. 171-182.
    • (1994) Proceedings of the 1994 European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 51
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • Sikonja M.R., Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53(1-2):23-69.
    • (2003) Mach. Learn. , vol.53 , Issue.1-2 , pp. 23-69
    • Sikonja, M.R.1    Kononenko, I.2
  • 52
    • 33845497491 scopus 로고    scopus 로고
    • Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier
    • Tahir M.A., Bouridane A., Kurugollu F. Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier. Pattern Recognition Lett. 2007, 28(4):438-446.
    • (2007) Pattern Recognition Lett. , vol.28 , Issue.4 , pp. 438-446
    • Tahir, M.A.1    Bouridane, A.2    Kurugollu, F.3
  • 53
    • 70349808005 scopus 로고    scopus 로고
    • Feature selection and weighting by nearest neighbor ensembles
    • Gertheiss J., Tutz G. Feature selection and weighting by nearest neighbor ensembles. Chemometr. Intell. Lab. Syst. 2009, 99:30-38.
    • (2009) Chemometr. Intell. Lab. Syst. , vol.99 , pp. 30-38
    • Gertheiss, J.1    Tutz, G.2
  • 54
    • 59649083826 scopus 로고    scopus 로고
    • Differential evolution algorithm with strategy adaptation for global numerical optimization
    • Qin A.K., Huang V.L., Suganthan P.N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 2009, 13(2):398-417.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.2 , pp. 398-417
    • Qin, A.K.1    Huang, V.L.2    Suganthan, P.N.3
  • 55
    • 65749094710 scopus 로고    scopus 로고
    • Differential evolution using a neighborhood-based mutation operator
    • Das S., Abraham A., Chakraborty U.K., Konar A. Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 2009, 13(3):526-553.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.3 , pp. 526-553
    • Das, S.1    Abraham, A.2    Chakraborty, U.K.3    Konar, A.4
  • 56
    • 70349860273 scopus 로고    scopus 로고
    • JADE: adaptive differential evolution with optional external archive
    • Zhang J., Sanderson A.C. JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009, 13(5):945-958.
    • (2009) IEEE Trans. Evol. Comput. , vol.13 , Issue.5 , pp. 945-958
    • Zhang, J.1    Sanderson, A.C.2
  • 57
    • 79951829331 scopus 로고    scopus 로고
    • KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework
    • Alcalá-Fdez J., Fernandez A., Luengo J., Derrac J., García S., Sánchez L., Herrera F. KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult. 2011, 17(2-3):255-287.
    • (2011) J. Mult. , vol.17 , Issue.2-3 , pp. 255-287
    • Alcalá-Fdez, J.1    Fernandez, A.2    Luengo, J.3    Derrac, J.4    García, S.5    Sánchez, L.6    Herrera, F.7
  • 59
    • 58549117670 scopus 로고    scopus 로고
    • Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach
    • Ahn H., Kim K. Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach. Appl. Soft Comput. 2009, 9:599-607.
    • (2009) Appl. Soft Comput. , vol.9 , pp. 599-607
    • Ahn, H.1    Kim, K.2
  • 61
    • 76549101909 scopus 로고    scopus 로고
    • Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts
    • García-Osorio C., de Haro-García A., García-Pedrajas N. Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts. Artif. Intell. 2010, 174:410-441.
    • (2010) Artif. Intell. , vol.174 , pp. 410-441
    • García-Osorio, C.1    de Haro-García, A.2    García-Pedrajas, N.3
  • 62
    • 33845982223 scopus 로고    scopus 로고
    • Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
    • Cano J.R., Herrera F., Lozano M. Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data Knowl. Eng. 2007, 60:90-108.
    • (2007) Data Knowl. Eng. , vol.60 , pp. 90-108
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 63
    • 68849109676 scopus 로고    scopus 로고
    • Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
    • García S., Fernández A., Herrera F. Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems. Appl. Soft Comput. 2009, 9:1304-1314.
    • (2009) Appl. Soft Comput. , vol.9 , pp. 1304-1314
    • García, S.1    Fernández, A.2    Herrera, F.3
  • 64
    • 79955590709 scopus 로고    scopus 로고
    • Prototype reduction techniques: a comparison among different approaches
    • Nanni L., Lumini A. Prototype reduction techniques: a comparison among different approaches. Expert Syst. Appl. 2011, 38(9):11820-11828.
    • (2011) Expert Syst. Appl. , vol.38 , Issue.9 , pp. 11820-11828
    • Nanni, L.1    Lumini, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.