-
4
-
-
0004267735
-
-
Springer, D.W. Aha (Ed.)
-
Lazy Learning 1997, Springer. D.W. Aha (Ed.).
-
(1997)
Lazy Learning
-
-
-
5
-
-
84926662675
-
Nearest neighbor pattern classification
-
Cover T.M., Hart P.E. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13(1):21-27.
-
(1967)
IEEE Trans. Inf. Theory
, vol.13
, Issue.1
, pp. 21-27
-
-
Cover, T.M.1
Hart, P.E.2
-
6
-
-
84944611438
-
-
Chapman & Hall/CRC Data Mining and Knowledge Discovery, X. Wu, V. Kumar (Eds.)
-
The Top Ten Algorithms in Data Mining 2009, Chapman & Hall/CRC Data Mining and Knowledge Discovery. X. Wu, V. Kumar (Eds.).
-
(2009)
The Top Ten Algorithms in Data Mining
-
-
-
7
-
-
78649915712
-
Edited AdaBoost by weighted kNN
-
Gao Y., Gao F. Edited AdaBoost by weighted kNN. Neurocomputing 2010, 73(16-18):3079-3088.
-
(2010)
Neurocomputing
, vol.73
, Issue.16-18
, pp. 3079-3088
-
-
Gao, Y.1
Gao, F.2
-
8
-
-
76749096459
-
IFS-CoCo: instance and feature selection based on cooperative coevolution with nearest neighbor rule
-
Derrac J., García S., Herrera F. IFS-CoCo: instance and feature selection based on cooperative coevolution with nearest neighbor rule. Pattern Recognition 2010, 43(6):2082-2105.
-
(2010)
Pattern Recognition
, vol.43
, Issue.6
, pp. 2082-2105
-
-
Derrac, J.1
García, S.2
Herrera, F.3
-
10
-
-
80051602199
-
Method for prediction of protein-protein interactions in yeast using genomics/proteomics information and feature selection
-
Urquiza J.M., Rojas I., Pomares H., Herrera L.J., Ortega J., Prieto A. Method for prediction of protein-protein interactions in yeast using genomics/proteomics information and feature selection. Neurocomputing 2011, 74(16):2683-2690.
-
(2011)
Neurocomputing
, vol.74
, Issue.16
, pp. 2683-2690
-
-
Urquiza, J.M.1
Rojas, I.2
Pomares, H.3
Herrera, L.J.4
Ortega, J.5
Prieto, A.6
-
12
-
-
80052932946
-
An efficient feature selection method for mobile devices with application to activity recognition
-
Peng J.X., Ferguson S., Rafferty K., Kelly P. An efficient feature selection method for mobile devices with application to activity recognition. Neurocomputing 2011, 74(17):3543-3552.
-
(2011)
Neurocomputing
, vol.74
, Issue.17
, pp. 3543-3552
-
-
Peng, J.X.1
Ferguson, S.2
Rafferty, K.3
Kelly, P.4
-
13
-
-
81355127279
-
Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection
-
Derrac J., Cornelis C., García S., Herrera F. Enhancing evolutionary instance selection algorithms by means of fuzzy rough set based feature selection. Inf. Sci. 2012, 186(1):73-92.
-
(2012)
Inf. Sci.
, vol.186
, Issue.1
, pp. 73-92
-
-
Derrac, J.1
Cornelis, C.2
García, S.3
Herrera, F.4
-
15
-
-
0343081513
-
Reduction techniques for instance-based learning algorithms
-
Wilson D.R., Martinez T.R. Reduction techniques for instance-based learning algorithms. Mach. Learn. 2000, 38(3):257-286.
-
(2000)
Mach. Learn.
, vol.38
, Issue.3
, pp. 257-286
-
-
Wilson, D.R.1
Martinez, T.R.2
-
16
-
-
77952551790
-
New method for instance or prototype selection using mutual information in time series prediction
-
Guillén A., Herrera L.J., Rubio G., Pomares H., Lendasse A., Rojas I. New method for instance or prototype selection using mutual information in time series prediction. Neurocomputing 2010, 73(10-12):2030-2038.
-
(2010)
Neurocomputing
, vol.73
, Issue.10-12
, pp. 2030-2038
-
-
Guillén, A.1
Herrera, L.J.2
Rubio, G.3
Pomares, H.4
Lendasse, A.5
Rojas, I.6
-
17
-
-
84856161441
-
Prototype selection for nearest neighbor classification: taxonomy and empirical study
-
García S., Derrac J., Cano J., Herrera F. Prototype selection for nearest neighbor classification: taxonomy and empirical study. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34(3):417-435.
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, Issue.3
, pp. 417-435
-
-
García, S.1
Derrac, J.2
Cano, J.3
Herrera, F.4
-
18
-
-
33846316693
-
Self-generating prototypes for pattern classification
-
Fayed H.A., Hashem S.R., Atiya A.F. Self-generating prototypes for pattern classification. Pattern Recognition 2007, 40(5):1498-1509.
-
(2007)
Pattern Recognition
, vol.40
, Issue.5
, pp. 1498-1509
-
-
Fayed, H.A.1
Hashem, S.R.2
Atiya, A.F.3
-
19
-
-
84655176618
-
A taxonomy and experimental study on prototype generation for nearest neighbor classification
-
Triguero I., Derrac J., García S., Herrera F. A taxonomy and experimental study on prototype generation for nearest neighbor classification. IEEE Trans. Syst. Man Cybern.-Part C: Appl. Rev. 2012, 42(1):86-100.
-
(2012)
IEEE Trans. Syst. Man Cybern.-Part C: Appl. Rev.
, vol.42
, Issue.1
, pp. 86-100
-
-
Triguero, I.1
Derrac, J.2
García, S.3
Herrera, F.4
-
20
-
-
0031073477
-
A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
-
Wettschereck D., Aha D.W., Mohri T. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artif. Intell. Rev. 1997, 11:273-314.
-
(1997)
Artif. Intell. Rev.
, vol.11
, pp. 273-314
-
-
Wettschereck, D.1
Aha, D.W.2
Mohri, T.3
-
21
-
-
33746412073
-
Learning weighted metrics to minimize nearest-neighbor classification error
-
Paredes R., Vidal E. Learning weighted metrics to minimize nearest-neighbor classification error. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28(7):1100-1110.
-
(2006)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.28
, Issue.7
, pp. 1100-1110
-
-
Paredes, R.1
Vidal, E.2
-
25
-
-
0347763609
-
Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study
-
Cano J.R., Herrera F., Lozano M. Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study. IEEE Trans. Evol. Comput. 2003, 7(6):561-575.
-
(2003)
IEEE Trans. Evol. Comput.
, vol.7
, Issue.6
, pp. 561-575
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
26
-
-
27344452492
-
A tutorial for competent memetic algorithms: model, taxonomy, and design issues
-
Krasnogor N., Smith J. A tutorial for competent memetic algorithms: model, taxonomy, and design issues. IEEE Trans. Evol. Comput. 2005, 9(5):474-488.
-
(2005)
IEEE Trans. Evol. Comput.
, vol.9
, Issue.5
, pp. 474-488
-
-
Krasnogor, N.1
Smith, J.2
-
27
-
-
42749092345
-
A memetic algorithm for evolutionary prototype selection: a scaling up approach
-
García S., Cano J.R., Herrera F. A memetic algorithm for evolutionary prototype selection: a scaling up approach. Pattern Recognition 2008, 41(8):2693-2709.
-
(2008)
Pattern Recognition
, vol.41
, Issue.8
, pp. 2693-2709
-
-
García, S.1
Cano, J.R.2
Herrera, F.3
-
28
-
-
3142672346
-
Evolutionary design of nearest prototype classifiers
-
Fernández F., Isasi P. Evolutionary design of nearest prototype classifiers. J. Heuristics 2004, 10(4):431-454.
-
(2004)
J. Heuristics
, vol.10
, Issue.4
, pp. 431-454
-
-
Fernández, F.1
Isasi, P.2
-
30
-
-
58149475488
-
Particle swarm optimization for prototype reduction
-
Nanni L., Lumini A. Particle swarm optimization for prototype reduction. Neurocomputing 2008, 72(4-6):1092-1097.
-
(2008)
Neurocomputing
, vol.72
, Issue.4-6
, pp. 1092-1097
-
-
Nanni, L.1
Lumini, A.2
-
31
-
-
0142000477
-
Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
-
Storn R., Price K.V. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 1997, 11(10):341-359.
-
(1997)
J. Global Optim.
, vol.11
, Issue.10
, pp. 341-359
-
-
Storn, R.1
Price, K.V.2
-
33
-
-
79952003251
-
Differential evolution: a survey of the state-of-the-art
-
Das S., Suganthan P. Differential evolution: a survey of the state-of-the-art. IEEE Trans. Evol. Comput. 2011, 15(1):4-31.
-
(2011)
IEEE Trans. Evol. Comput.
, vol.15
, Issue.1
, pp. 4-31
-
-
Das, S.1
Suganthan, P.2
-
34
-
-
78650282967
-
Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification
-
Triguero I., García S., Herrera F. Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification. Pattern Recognition 2011, 44(4):901-916.
-
(2011)
Pattern Recognition
, vol.44
, Issue.4
, pp. 901-916
-
-
Triguero, I.1
García, S.2
Herrera, F.3
-
35
-
-
39549117816
-
Local feature weighting in nearest prototype classification
-
Fernández F., Isasi P. Local feature weighting in nearest prototype classification. IEEE Trans. Neural Networks 2008, 19(1):40-53.
-
(2008)
IEEE Trans. Neural Networks
, vol.19
, Issue.1
, pp. 40-53
-
-
Fernández, F.1
Isasi, P.2
-
36
-
-
33746242351
-
Prototype classifier design with pruning
-
Li J., Manry M.T., Yu C., Wilson D.R. Prototype classifier design with pruning. Int. J. Artif. Intell. Tools 2005, 14(1-2):261-280.
-
(2005)
Int. J. Artif. Intell. Tools
, vol.14
, Issue.1-2
, pp. 261-280
-
-
Li, J.1
Manry, M.T.2
Yu, C.3
Wilson, D.R.4
-
37
-
-
78650064965
-
IPADE: iterative prototype adjustment for nearest neighbor classification
-
Triguero I., García S., Herrera F. IPADE: iterative prototype adjustment for nearest neighbor classification. IEEE Trans. Neural Networks 2010, 21(12):1984-1990.
-
(2010)
IEEE Trans. Neural Networks
, vol.21
, Issue.12
, pp. 1984-1990
-
-
Triguero, I.1
García, S.2
Herrera, F.3
-
38
-
-
79957924345
-
Enhancing IPADE algorithm with a different individual codification
-
Lecture Notes in Artificial Intelligence
-
I. Triguero, S. García, F. Herrera, Enhancing IPADE algorithm with a different individual codification, in: Proceedings of the 6th International Conference on Hybrid Artificial Intelligence Systems (HAIS), Lecture Notes in Artificial Intelligence, vol. 6679, 2011, pp. 262-270.
-
(2011)
Proceedings of the 6th International Conference on Hybrid Artificial Intelligence Systems (HAIS)
, vol.6679
, pp. 262-270
-
-
Triguero, I.1
García, S.2
Herrera, F.3
-
39
-
-
17444379003
-
Stratification for scaling up evolutionary prototype selection
-
Cano J.R., Herrera F., Lozano M. Stratification for scaling up evolutionary prototype selection. Pattern Recognition Lett. 2005, 26(7):953-963.
-
(2005)
Pattern Recognition Lett.
, vol.26
, Issue.7
, pp. 953-963
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
40
-
-
83755196562
-
A study of the scaling up capabilities of stratified prototype generation
-
I. Triguero, J. Derrac, S. García, F. Herrera, A study of the scaling up capabilities of stratified prototype generation, in: Proceedings of the Third World Congress on Nature and Biologically Inspired Computing (NABIC'11), 2011, pp. 304-309.
-
(2011)
Proceedings of the Third World Congress on Nature and Biologically Inspired Computing (NABIC'11)
, pp. 304-309
-
-
Triguero, I.1
Derrac, J.2
García, S.3
Herrera, F.4
-
41
-
-
65649109765
-
Scale factor local search in differential evolution
-
Neri F., Tirronen V. Scale factor local search in differential evolution. Memetic Comput. 2009, 1(2):153-171.
-
(2009)
Memetic Comput.
, vol.1
, Issue.2
, pp. 153-171
-
-
Neri, F.1
Tirronen, V.2
-
42
-
-
77549084648
-
Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power
-
García S., Fernández A., Luengo J., Herrera F. Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power. Inf. Sci. 2010, 180:2044-2064.
-
(2010)
Inf. Sci.
, vol.180
, pp. 2044-2064
-
-
García, S.1
Fernández, A.2
Luengo, J.3
Herrera, F.4
-
43
-
-
84931162639
-
The condensed nearest neighbor rule
-
Hart P.E. The condensed nearest neighbor rule. IEEE Trans. Inf. Theory 1968, 18:515-516.
-
(1968)
IEEE Trans. Inf. Theory
, vol.18
, pp. 515-516
-
-
Hart, P.E.1
-
44
-
-
0015361129
-
Asymptotic properties of nearest neighbor rules using edited data
-
Wilson D.L. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Syst. Man Cybern. 1972, 2(3):408-421.
-
(1972)
IEEE Trans. Syst. Man Cybern.
, vol.2
, Issue.3
, pp. 408-421
-
-
Wilson, D.L.1
-
45
-
-
0347895067
-
Analysis of new techniques to obtain quality training sets
-
Sánchez J.S., Barandela R., Marqués A.I., Alejo R., Badenas J. Analysis of new techniques to obtain quality training sets. Pattern Recognition Lett. 2003, 24(7):1015-1022.
-
(2003)
Pattern Recognition Lett.
, vol.24
, Issue.7
, pp. 1015-1022
-
-
Sánchez, J.S.1
Barandela, R.2
Marqués, A.I.3
Alejo, R.4
Badenas, J.5
-
46
-
-
18144451785
-
High training set size reduction by space partitioning and prototype abstraction
-
Sánchez J.S. High training set size reduction by space partitioning and prototype abstraction. Pattern Recognition 2004, 37(7):1561-1564.
-
(2004)
Pattern Recognition
, vol.37
, Issue.7
, pp. 1561-1564
-
-
Sánchez, J.S.1
-
47
-
-
0025725905
-
Instance-based learning algorithms
-
Aha D.W., Kibler D., Albert M.K. Instance-based learning algorithms. Mach. Learn. 1991, 6(1):37-66.
-
(1991)
Mach. Learn.
, vol.6
, Issue.1
, pp. 37-66
-
-
Aha, D.W.1
Kibler, D.2
Albert, M.K.3
-
48
-
-
85146422424
-
A practical approach to feature selection
-
Morgan Kaufmann, Aberdeen, Scotland
-
K. Kira, L.A. Rendell, A practical approach to feature selection, in: Proceedings of the Ninth International Conference on Machine Learning, Morgan Kaufmann, Aberdeen, Scotland, 1992, pp. 249-256.
-
(1992)
Proceedings of the Ninth International Conference on Machine Learning
, pp. 249-256
-
-
Kira, K.1
Rendell, L.A.2
-
49
-
-
37549049756
-
Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a machine learning approach for feature weighting
-
Ye K., Feenstra K., Heringa J., Ijzerman A., Marchiori E. Multi-RELIEF: a method to recognize specificity determining residues from multiple sequence alignments using a machine learning approach for feature weighting. Bioinformatics 2008, 24(1):18-25.
-
(2008)
Bioinformatics
, vol.24
, Issue.1
, pp. 18-25
-
-
Ye, K.1
Feenstra, K.2
Heringa, J.3
Ijzerman, A.4
Marchiori, E.5
-
50
-
-
84992726552
-
Estimating attributes: analysis and extensions of RELIEF
-
Springer Verlag, Catania, Italy
-
I. Kononenko, Estimating attributes: analysis and extensions of RELIEF, in: Proceedings of the 1994 European Conference on Machine Learning, Springer Verlag, Catania, Italy, 1994, pp. 171-182.
-
(1994)
Proceedings of the 1994 European Conference on Machine Learning
, pp. 171-182
-
-
Kononenko, I.1
-
51
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
Sikonja M.R., Kononenko I. Theoretical and empirical analysis of ReliefF and RReliefF. Mach. Learn. 2003, 53(1-2):23-69.
-
(2003)
Mach. Learn.
, vol.53
, Issue.1-2
, pp. 23-69
-
-
Sikonja, M.R.1
Kononenko, I.2
-
52
-
-
33845497491
-
Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier
-
Tahir M.A., Bouridane A., Kurugollu F. Simultaneous feature selection and feature weighting using hybrid tabu search/k-nearest neighbor classifier. Pattern Recognition Lett. 2007, 28(4):438-446.
-
(2007)
Pattern Recognition Lett.
, vol.28
, Issue.4
, pp. 438-446
-
-
Tahir, M.A.1
Bouridane, A.2
Kurugollu, F.3
-
53
-
-
70349808005
-
Feature selection and weighting by nearest neighbor ensembles
-
Gertheiss J., Tutz G. Feature selection and weighting by nearest neighbor ensembles. Chemometr. Intell. Lab. Syst. 2009, 99:30-38.
-
(2009)
Chemometr. Intell. Lab. Syst.
, vol.99
, pp. 30-38
-
-
Gertheiss, J.1
Tutz, G.2
-
54
-
-
59649083826
-
Differential evolution algorithm with strategy adaptation for global numerical optimization
-
Qin A.K., Huang V.L., Suganthan P.N. Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans. Evol. Comput. 2009, 13(2):398-417.
-
(2009)
IEEE Trans. Evol. Comput.
, vol.13
, Issue.2
, pp. 398-417
-
-
Qin, A.K.1
Huang, V.L.2
Suganthan, P.N.3
-
55
-
-
65749094710
-
Differential evolution using a neighborhood-based mutation operator
-
Das S., Abraham A., Chakraborty U.K., Konar A. Differential evolution using a neighborhood-based mutation operator. IEEE Trans. Evol. Comput. 2009, 13(3):526-553.
-
(2009)
IEEE Trans. Evol. Comput.
, vol.13
, Issue.3
, pp. 526-553
-
-
Das, S.1
Abraham, A.2
Chakraborty, U.K.3
Konar, A.4
-
56
-
-
70349860273
-
JADE: adaptive differential evolution with optional external archive
-
Zhang J., Sanderson A.C. JADE: adaptive differential evolution with optional external archive. IEEE Trans. Evol. Comput. 2009, 13(5):945-958.
-
(2009)
IEEE Trans. Evol. Comput.
, vol.13
, Issue.5
, pp. 945-958
-
-
Zhang, J.1
Sanderson, A.C.2
-
57
-
-
79951829331
-
KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework
-
Alcalá-Fdez J., Fernandez A., Luengo J., Derrac J., García S., Sánchez L., Herrera F. KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult. 2011, 17(2-3):255-287.
-
(2011)
J. Mult.
, vol.17
, Issue.2-3
, pp. 255-287
-
-
Alcalá-Fdez, J.1
Fernandez, A.2
Luengo, J.3
Derrac, J.4
García, S.5
Sánchez, L.6
Herrera, F.7
-
59
-
-
58549117670
-
Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach
-
Ahn H., Kim K. Bankruptcy prediction modeling with hybrid case-based reasoning and genetic algorithms approach. Appl. Soft Comput. 2009, 9:599-607.
-
(2009)
Appl. Soft Comput.
, vol.9
, pp. 599-607
-
-
Ahn, H.1
Kim, K.2
-
61
-
-
76549101909
-
Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts
-
García-Osorio C., de Haro-García A., García-Pedrajas N. Democratic instance selection: a linear complexity instance selection algorithm based on classifier ensemble concepts. Artif. Intell. 2010, 174:410-441.
-
(2010)
Artif. Intell.
, vol.174
, pp. 410-441
-
-
García-Osorio, C.1
de Haro-García, A.2
García-Pedrajas, N.3
-
62
-
-
33845982223
-
Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability
-
Cano J.R., Herrera F., Lozano M. Evolutionary stratified training set selection for extracting classification rules with trade off precision-interpretability. Data Knowl. Eng. 2007, 60:90-108.
-
(2007)
Data Knowl. Eng.
, vol.60
, pp. 90-108
-
-
Cano, J.R.1
Herrera, F.2
Lozano, M.3
-
63
-
-
68849109676
-
Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
-
García S., Fernández A., Herrera F. Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems. Appl. Soft Comput. 2009, 9:1304-1314.
-
(2009)
Appl. Soft Comput.
, vol.9
, pp. 1304-1314
-
-
García, S.1
Fernández, A.2
Herrera, F.3
-
64
-
-
79955590709
-
Prototype reduction techniques: a comparison among different approaches
-
Nanni L., Lumini A. Prototype reduction techniques: a comparison among different approaches. Expert Syst. Appl. 2011, 38(9):11820-11828.
-
(2011)
Expert Syst. Appl.
, vol.38
, Issue.9
, pp. 11820-11828
-
-
Nanni, L.1
Lumini, A.2
|