메뉴 건너뛰기




Volumn 74, Issue 17, 2011, Pages 3543-3552

An efficient feature selection method for mobile devices with application to activity recognition

Author keywords

Activity recognition; Data classification; Feature selection algorithm; Mobile devices

Indexed keywords

ACCELEROMETER DATA; ACTIVITY RECOGNITION; CLASS LABELS; DATA CLASSIFICATION; EFFICIENT FEATURE SELECTIONS; FEATURE SELECTION ALGORITHM; FEATURE SELECTION METHODS; HUMAN ACTIVITY RECOGNITION; INFORMATIVENESS; MEMORY REQUIREMENTS; REGRESSION MODEL; SUBSET SELECTION; TRAINING PATTERNS; TRAINING PROCEDURES; TWO STAGE; VARIABLE SELECTION;

EID: 80052932946     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2011.06.023     Document Type: Article
Times cited : (18)

References (55)
  • 2
    • 0027391121 scopus 로고
    • Validity and reliability of self-reported physical activity status: the Lipid Research Clinics questionnaire
    • Ainsworth B.E., Jacobs D.R., Leon A.S. Validity and reliability of self-reported physical activity status: the Lipid Research Clinics questionnaire. Medicine and Science in Sports and Exercise 1993, 25:92-98.
    • (1993) Medicine and Science in Sports and Exercise , vol.25 , pp. 92-98
    • Ainsworth, B.E.1    Jacobs, D.R.2    Leon, A.S.3
  • 3
    • 0031334221 scopus 로고    scopus 로고
    • Selection of relevant features and examples in machine learning
    • Blum A., Langley P. Selection of relevant features and examples in machine learning. Artificial Intelligence 1997, 97:245-271.
    • (1997) Artificial Intelligence , vol.97 , pp. 245-271
    • Blum, A.1    Langley, P.2
  • 4
    • 13944251890 scopus 로고    scopus 로고
    • Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications
    • Aminian K., Najafi B. Capturing human motion using body-fixed sensors: outdoor measurement and clinical applications. Computer Animation Virtual Worlds 2004, vol. 15:79-94.
    • (2004) Computer Animation Virtual Worlds , vol.15 , pp. 79-94
    • Aminian, K.1    Najafi, B.2
  • 6
    • 9944239444 scopus 로고    scopus 로고
    • Low physical activity as a predictor for total and cardiovascular disease mortality in middle-aged men and women in Finland
    • Barengo N.C., Hu G., Lakka T.A., Pekkarinen H., Nissinen A., Tuomilehto J. Low physical activity as a predictor for total and cardiovascular disease mortality in middle-aged men and women in Finland. European Heart Journal 2004, 25:2204-2211.
    • (2004) European Heart Journal , vol.25 , pp. 2204-2211
    • Barengo, N.C.1    Hu, G.2    Lakka, T.A.3    Pekkarinen, H.4    Nissinen, A.5    Tuomilehto, J.6
  • 10
    • 33747873786 scopus 로고    scopus 로고
    • Multi-class feature selection for texture classification
    • Chen X., Zeng X., van Alphen D. Multi-class feature selection for texture classification. Pattern Recognition Letters 2006, 27(14):1685-1691.
    • (2006) Pattern Recognition Letters , vol.27 , Issue.14 , pp. 1685-1691
    • Chen, X.1    Zeng, X.2    van Alphen, D.3
  • 12
    • 0035568918 scopus 로고    scopus 로고
    • A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications
    • Dey A., Abowd G.D., Salber D. A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Human-Computer Interaction 2001, 16(2-4):97-166.
    • (2001) Human-Computer Interaction , vol.16 , Issue.2-4 , pp. 97-166
    • Dey, A.1    Abowd, G.D.2    Salber, D.3
  • 16
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I., Weston J., Barnhill S., Vapnik V. Gene selection for cancer classification using support vector machines. Machine Learning 2002, 46(1-3):389-422.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 18
    • 65349117069 scopus 로고    scopus 로고
    • A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data
    • Preece S.J., Goulermas J.Y., Kenney L.P.J., Howard D. A comparison of feature extraction methods for the classification of dynamic activities from accelerometer data. IEEE Transactions on Biomedical Engineering 2009, 56(3):871-879.
    • (2009) IEEE Transactions on Biomedical Engineering , vol.56 , Issue.3 , pp. 871-879
    • Preece, S.J.1    Goulermas, J.Y.2    Kenney, L.P.J.3    Howard, D.4
  • 19
    • 33646099818 scopus 로고    scopus 로고
    • FS-SFS: a novel feature selection method for support vector machines
    • Liu Y., Zheng Y.F. FS-SFS: a novel feature selection method for support vector machines. Pattern Recognition 2006, 39:1333-1345.
    • (2006) Pattern Recognition , vol.39 , pp. 1333-1345
    • Liu, Y.1    Zheng, Y.F.2
  • 21
    • 64749086339 scopus 로고    scopus 로고
    • A wrapper method for feature selection using support vector machines
    • Maldonado S., Weber R. A wrapper method for feature selection using support vector machines. Information Sciences 2009, 179:2208-2217.
    • (2009) Information Sciences , vol.179 , pp. 2208-2217
    • Maldonado, S.1    Weber, R.2
  • 23
    • 44949258241 scopus 로고    scopus 로고
    • Multiclass SVM-RFE for product form feature selection
    • Shieh M.-D., Yang C-C. Multiclass SVM-RFE for product form feature selection. Expert Systems with Applications 2008, 35(1-2):531-541.
    • (2008) Expert Systems with Applications , vol.35 , Issue.1-2 , pp. 531-541
    • Shieh, M.-D.1    Yang, C.-C.2
  • 24
    • 68949155378 scopus 로고    scopus 로고
    • Feature subset selection in large dimensionality domains
    • Gheyas I., Smith L. Feature subset selection in large dimensionality domains. Pattern Recognition 2010, 43:5-13.
    • (2010) Pattern Recognition , vol.43 , pp. 5-13
    • Gheyas, I.1    Smith, L.2
  • 25
    • 33845802629 scopus 로고    scopus 로고
    • Stochastic local search for the feature set problem, with applications to micro array data
    • Albrecht A.A. Stochastic local search for the feature set problem, with applications to micro array data. Applied Mathematics and Computation 2006, 183:1148-1164.
    • (2006) Applied Mathematics and Computation , vol.183 , pp. 1148-1164
    • Albrecht, A.A.1
  • 27
    • 33745771538 scopus 로고    scopus 로고
    • Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles
    • Jin X., Xu A., Bie R., Guo P. Machine learning techniques and chi-square feature selection for cancer classification using SAGE gene expression profiles. Lecture Notes in Computer Science 2006, 3916:106-115.
    • (2006) Lecture Notes in Computer Science , vol.3916 , pp. 106-115
    • Jin, X.1    Xu, A.2    Bie, R.3    Guo, P.4
  • 28
    • 38349055168 scopus 로고    scopus 로고
    • Gene selection using Wilcoxon rank sum test and support vector machine for cancer
    • Liao C., Li S., Luo Z. Gene selection using Wilcoxon rank sum test and support vector machine for cancer. Lecture Notes in Computer Science 2007, 4456:57-66.
    • (2007) Lecture Notes in Computer Science , vol.4456 , pp. 57-66
    • Liao, C.1    Li, S.2    Luo, Z.3
  • 29
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutualin formation criteria of max-dependency, max-relevance, and min redundancy
    • Peng H., Long F., Ding C. Feature selection based on mutualin formation criteria of max-dependency, max-relevance, and min redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence 2005, 27:1226-1238.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.27 , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 30
    • 61349133540 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data-a Pearson redundancy based filter
    • Biesiada J., Duch W. Feature selection for high-dimensional data-a Pearson redundancy based filter. Advances in Soft Computing 2008, 45:242-249.
    • (2008) Advances in Soft Computing , vol.45 , pp. 242-249
    • Biesiada, J.1    Duch, W.2
  • 33
    • 33845523839 scopus 로고    scopus 로고
    • Feature selection based on rough sets and particle swarm optimization
    • Wang X., Yang J., Teng X., Xia W., Richard J. Feature selection based on rough sets and particle swarm optimization. Pattern Recognition Letters 2007, 28:459-471.
    • (2007) Pattern Recognition Letters , vol.28 , pp. 459-471
    • Wang, X.1    Yang, J.2    Teng, X.3    Xia, W.4    Richard, J.5
  • 34
    • 31144448615 scopus 로고    scopus 로고
    • Using simulated annealing to optimize feature selection problem in marketing applications
    • Ronen M., Jacob Z. Using simulated annealing to optimize feature selection problem in marketing applications. European Journal of Operational Research 2006, 171:842-858.
    • (2006) European Journal of Operational Research , vol.171 , pp. 842-858
    • Ronen, M.1    Jacob, Z.2
  • 35
    • 33845980222 scopus 로고    scopus 로고
    • Neural input selection-a fast model based approach
    • Li K., Peng J.-X. Neural input selection-a fast model based approach. Neurocomputing 2007, 70:762-769.
    • (2007) Neurocomputing , vol.70 , pp. 762-769
    • Li, K.1    Peng, J.-X.2
  • 36
    • 80052950882 scopus 로고    scopus 로고
    • HaptiMap - Haptic, Audio and Visual Interfaces for Maps and Location-based Services, Large-scale Integrating Project, European Commission Seventh Framework Programme, 〈〉.
    • HaptiMap - Haptic, Audio and Visual Interfaces for Maps and Location-based Services, Large-scale Integrating Project, European Commission Seventh Framework Programme, 〈〉. http://www.haptimap.org/.
  • 37
    • 80052942011 scopus 로고    scopus 로고
    • Cwiid-A Collection of Linux Tools Written in C for Interfacing to the Nintendo Wiimote, 〈〉.
    • Cwiid-A Collection of Linux Tools Written in C for Interfacing to the Nintendo Wiimote, 〈〉. http://abstrakraft.org/cwiid/.
  • 38
    • 30744459394 scopus 로고    scopus 로고
    • Guidelines for the development of national policies and strategies for promoting health through physical activity
    • 〈,〉
    • Hagendoorn H., Vuori I., Oja P. Guidelines for the development of national policies and strategies for promoting health through physical activity. The European Network for the Promotion of Health-Enhancing Physical Activity 2004, 〈http://www.who.int/gb/ebwha/pdf_files/WHA57/A57_R17-en.pdf〉.
    • (2004) The European Network for the Promotion of Health-Enhancing Physical Activity
    • Hagendoorn, H.1    Vuori, I.2    Oja, P.3
  • 39
    • 2342539792 scopus 로고    scopus 로고
    • Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement
    • Mathie M.J., Coster A.C.F., Lovell N.H., Celler B.G. Accelerometry: providing an integrated, practical method for long-term, ambulatory monitoring of human movement. Physiological Measurement. 2004, 25:R1-R20.
    • (2004) Physiological Measurement. , vol.25
    • Mathie, M.J.1    Coster, A.C.F.2    Lovell, N.H.3    Celler, B.G.4
  • 44
    • 33750380239 scopus 로고    scopus 로고
    • Farther than you may think: an empirical investigation of the proximity of users to their mobile phones
    • Springer-Veralg
    • Patel S.N., Kientz J.A., Hayes G.R., Bhat S., Abowd G.D. Farther than you may think: an empirical investigation of the proximity of users to their mobile phones. Proceedings of Ubicomp 2006, 123-140. Springer-Veralg.
    • (2006) Proceedings of Ubicomp , pp. 123-140
    • Patel, S.N.1    Kientz, J.A.2    Hayes, G.R.3    Bhat, S.4    Abowd, G.D.5
  • 48
    • 33646787680 scopus 로고    scopus 로고
    • Activity and location recognition using wearable sensors
    • Lee S.-W., Mase K. Activity and location recognition using wearable sensors. Pervasive Computing 2002, 1(3):24-32.
    • (2002) Pervasive Computing , vol.1 , Issue.3 , pp. 24-32
    • Lee, S.-W.1    Mase, K.2
  • 52
    • 83455217064 scopus 로고    scopus 로고
    • A new perspective for information theoretic feature selection, in: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, April 16-18, 2009, Clearwater Beach, Florida, USA, 2009
    • G. Brown, A new perspective for information theoretic feature selection, in: Proceedings of the Twelfth International Conference on Artificial Intelligence and Statistics, vol. 5, April 16-18, 2009, Clearwater Beach, Florida, USA, 2009, pp. 49-56.
    • , vol.5 , pp. 49-56
    • Brown, G.1
  • 53
    • 33646800222 scopus 로고    scopus 로고
    • A two-stage algorithm for identification of nonlinear dynamic systems
    • Li K., Pengm J.-X., Bai E.-W. A two-stage algorithm for identification of nonlinear dynamic systems. Automatica 2006, 42(7):1189-1197.
    • (2006) Automatica , vol.42 , Issue.7 , pp. 1189-1197
    • Li, K.1    Pengm, J.-X.2    Bai, E.-W.3
  • 55
    • 0034266879 scopus 로고    scopus 로고
    • Iterative fast orthogonal search algorithm for MDL-based training of generalized single-layer network
    • Adeney K.M., Korenberg M.J. Iterative fast orthogonal search algorithm for MDL-based training of generalized single-layer network. Neural Networks 2000, 13(7):787-799.
    • (2000) Neural Networks , vol.13 , Issue.7 , pp. 787-799
    • Adeney, K.M.1    Korenberg, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.