메뉴 건너뛰기




Volumn 33, Issue , 2012, Pages 181-193

A meta-learning approach to the regularized learning-Case study: Blood glucose prediction

Author keywords

Adaptive parameter choice; Blood glucose prediction; Kernel choice; Learning theory; Meta learning; Regularization

Indexed keywords

ADAPTIVE PARAMETERS; BLOOD GLUCOSE; KERNEL CHOICE; LEARNING THEORY; METALEARNING; REGULARIZATION;

EID: 84863859637     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2012.05.004     Document Type: Article
Times cited : (50)

References (52)
  • 1
    • 84876045707 scopus 로고    scopus 로고
    • Abbott Diabetes Care
    • Abbott Diabetes Care, (2010). http://www.abbottdiabetescare.com.
    • (2010)
  • 4
    • 77954939888 scopus 로고    scopus 로고
    • Prevention of nocturnal hypoglycemia using predictive alarm algorithms and insulin pump suspension
    • Buckingham B., Chase H.P., Dassau E., Cobry E., Clinton P., Gage V., et al. Prevention of nocturnal hypoglycemia using predictive alarm algorithms and insulin pump suspension. Diabetes Care 2010, 33:1013-1018.
    • (2010) Diabetes Care , vol.33 , pp. 1013-1018
    • Buckingham, B.1    Chase, H.P.2    Dassau, E.3    Cobry, E.4    Clinton, P.5    Gage, V.6
  • 6
    • 25644435718 scopus 로고    scopus 로고
    • Evaluating the clinical accuracy of two continuous glucose sensors using Continuous glucose-error grid analysis
    • Clarke W.L., Anderson S., Farhy L., Breton M., Gonder-Frederick L., Cox D., et al. Evaluating the clinical accuracy of two continuous glucose sensors using Continuous glucose-error grid analysis. Diabetes Care 2005, 28:2412-2417.
    • (2005) Diabetes Care , vol.28 , pp. 2412-2417
    • Clarke, W.L.1    Anderson, S.2    Farhy, L.3    Breton, M.4    Gonder-Frederick, L.5    Cox, D.6
  • 7
  • 11
    • 84876031492 scopus 로고    scopus 로고
    • DexCom: Continuous Glucose Meter
    • DexCom: Continuous Glucose Meter, (2011). http://www.dexcom.com.
    • (2011)
  • 12
    • 84876030932 scopus 로고    scopus 로고
    • DIAdvisor: personal glucose predictive diabetes advisor
    • DIAdvisor: personal glucose predictive diabetes advisor, (2008). http://www.diadvisor.eu.
    • (2008)
  • 13
    • 0003277393 scopus 로고    scopus 로고
    • Regularization of inverse problems
    • Kluwer Academic Publishers, Dordrecht, Boston, London
    • Engl H., Hanke M., Neubauer A. Regularization of inverse problems. Mathematics and its applications 1996, vol. 375. Kluwer Academic Publishers, Dordrecht, Boston, London.
    • (1996) Mathematics and its applications , vol.375
    • Engl, H.1    Hanke, M.2    Neubauer, A.3
  • 14
    • 64349107874 scopus 로고    scopus 로고
    • Estimation of future glucose concentrations with subject-specific recursive linear models
    • Eren-Oruklu M., Cinar A., Quinn L., Smith D. Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technology & Therapeutics 2009, 11:243-253.
    • (2009) Diabetes Technology & Therapeutics , vol.11 , pp. 243-253
    • Eren-Oruklu, M.1    Cinar, A.2    Quinn, L.3    Smith, D.4
  • 17
    • 82455210873 scopus 로고    scopus 로고
    • Combining meta-learning and search techniques to select parameters for support vector machines
    • Gomes T., Prudencio R., Soares C., Rossi A., Carvalho A. Combining meta-learning and search techniques to select parameters for support vector machines. Neurocomputing 2012, 75:3-13.
    • (2012) Neurocomputing , vol.75 , pp. 3-13
    • Gomes, T.1    Prudencio, R.2    Soares, C.3    Rossi, A.4    Carvalho, A.5
  • 18
    • 54749153001 scopus 로고    scopus 로고
    • On the convergence of the quasi-optimality criterion for (iterated) Tikhonov regularization
    • Kindermann S., Neubauer A. On the convergence of the quasi-optimality criterion for (iterated) Tikhonov regularization. Inverse Problems and Imaging 2008, 2:291-299.
    • (2008) Inverse Problems and Imaging , vol.2 , pp. 291-299
    • Kindermann, S.1    Neubauer, A.2
  • 19
    • 18144421498 scopus 로고    scopus 로고
    • Continuous glucose monitoring: roadmap for 21-st diabetes therapy
    • Klonoff D.W. Continuous glucose monitoring: roadmap for 21-st diabetes therapy. Diabetes Care 2005, 28:1231-1239.
    • (2005) Diabetes Care , vol.28 , pp. 1231-1239
    • Klonoff, D.W.1
  • 21
    • 59649129116 scopus 로고    scopus 로고
    • Peculiarities of the continuous glucose monitoring data stream and their impact on developing closed-loop control technology
    • Kovatchev B., Clarke W. Peculiarities of the continuous glucose monitoring data stream and their impact on developing closed-loop control technology. Journal of Diabetes Science and Technology 2008, 2:158-163.
    • (2008) Journal of Diabetes Science and Technology , vol.2 , pp. 158-163
    • Kovatchev, B.1    Clarke, W.2
  • 22
    • 62249151783 scopus 로고    scopus 로고
    • Graphical and numerical evaluation of continuous glucose sensing time lag
    • Kovatchev B., Shields D., Breton M. Graphical and numerical evaluation of continuous glucose sensing time lag. Diabetes Technology & Therapeutics 2009, 11:139-143.
    • (2009) Diabetes Technology & Therapeutics , vol.11 , pp. 139-143
    • Kovatchev, B.1    Shields, D.2    Breton, M.3
  • 23
    • 61349203972 scopus 로고    scopus 로고
    • Approximate minimization of the regularized expected error over kernel models
    • Kurková V., Sanguineti M. Approximate minimization of the regularized expected error over kernel models. Mathematics of Operations Research 2008, 33:747-756.
    • (2008) Mathematics of Operations Research , vol.33 , pp. 747-756
    • Kurková, V.1    Sanguineti, M.2
  • 25
    • 0000012624 scopus 로고
    • On a problem of adaptive estimation in Gaussian white noise
    • Lepskij O. On a problem of adaptive estimation in Gaussian white noise. Theory of Probability and its Applications 1990, 35:454-466.
    • (1990) Theory of Probability and its Applications , vol.35 , pp. 454-466
    • Lepskij, O.1
  • 27
    • 14544299611 scopus 로고    scopus 로고
    • On learning vector-valued functions
    • Micchelli C.A., Pontil M. On learning vector-valued functions. Neural Computation 2005, 17:177-204.
    • (2005) Neural Computation , vol.17 , pp. 177-204
    • Micchelli, C.A.1    Pontil, M.2
  • 28
    • 0000739264 scopus 로고
    • On the solution of functional equations by the method of regularization
    • Morozov V. On the solution of functional equations by the method of regularization. Soviet Mathematics - Doklady 1966, 7:414-417.
    • (1966) Soviet Mathematics - Doklady , vol.7 , pp. 414-417
    • Morozov, V.1
  • 30
    • 79959756904 scopus 로고    scopus 로고
    • Extrapolation in variable RKHSs with application to the blood glucose reading
    • 075010
    • Naumova V., Pereverzyev S.V., Sivananthan S. Extrapolation in variable RKHSs with application to the blood glucose reading. Inverse Problems 2011, 27. 075010, p. 13.
    • (2011) Inverse Problems , vol.27 , pp. 13
    • Naumova, V.1    Pereverzyev, S.V.2    Sivananthan, S.3
  • 33
    • 54749149727 scopus 로고    scopus 로고
    • Hypoglycemia detection and prediction using continuous glucose monitoring - a study on hypoglycemic clamp data
    • Palerm C., Bequette B.W. Hypoglycemia detection and prediction using continuous glucose monitoring - a study on hypoglycemic clamp data. Journal of Diabetes Science and Technology 2007, 1:624-629.
    • (2007) Journal of Diabetes Science and Technology , vol.1 , pp. 624-629
    • Palerm, C.1    Bequette, B.W.2
  • 34
    • 75749125065 scopus 로고    scopus 로고
    • Development of neural network for prediction of glucose concentration in type 1 diabetes patients
    • Pappada S., Cameron B., Rosman P. Development of neural network for prediction of glucose concentration in type 1 diabetes patients. Journal of Diabetes Science and Technology 2008, 2:792-801.
    • (2008) Journal of Diabetes Science and Technology , vol.2 , pp. 792-801
    • Pappada, S.1    Cameron, B.2    Rosman, P.3
  • 39
    • 84890326874 scopus 로고
    • A technique for the numerical solution of certain integral equations of the first kind
    • Phillips D. A technique for the numerical solution of certain integral equations of the first kind. Journal of the Association for Computing Machinery 1962, 9:84-97.
    • (1962) Journal of the Association for Computing Machinery , vol.9 , pp. 84-97
    • Phillips, D.1
  • 41
    • 56049099339 scopus 로고    scopus 로고
    • Kernel-based inductive transfer
    • Springer, Berlin/Heidelberg, W. Daelemans, B. Goethals, K. Morik (Eds.) Machine learning and knowledge discovery in databases
    • Rückert U., Kramer S. Kernel-based inductive transfer. Lecture notes in computer science 2008, vol. 5212:220-233. Springer, Berlin/Heidelberg. W. Daelemans, B. Goethals, K. Morik (Eds.).
    • (2008) Lecture notes in computer science , vol.5212 , pp. 220-233
    • Rückert, U.1    Kramer, S.2
  • 46
    • 1642276856 scopus 로고    scopus 로고
    • A meta-learning approach to select the kernel width in support vector regression
    • Soares C., Brazdil P.B., Kuba P. A meta-learning approach to select the kernel width in support vector regression. Machine Learning 2004, 54:195-209.
    • (2004) Machine Learning , vol.54 , pp. 195-209
    • Soares, C.1    Brazdil, P.B.2    Kuba, P.3
  • 47
    • 33646801239 scopus 로고    scopus 로고
    • Selection of tuning parameters for support vector machine
    • Solo, V. (2005). Selection of tuning parameters for support vector machine. In IEEE ICASSP (pp. 237-240).
    • (2005) IEEE ICASSP , pp. 237-240
    • Solo, V.1
  • 48
    • 34247372642 scopus 로고    scopus 로고
    • Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series
    • Sparacino G., Zanderigo F., Corazza S., Maran A. Glucose concentration can be predicted ahead in time from continuous glucose monitoring sensor time-series. IEEE Transactions on Biomedical Engineering 2007, 54:931-937.
    • (2007) IEEE Transactions on Biomedical Engineering , vol.54 , pp. 931-937
    • Sparacino, G.1    Zanderigo, F.2    Corazza, S.3    Maran, A.4
  • 51
    • 0003241881 scopus 로고
    • Spline models for observational data
    • SIAM, CBMS-NSF Regional Conf.
    • Wahba G. Spline models for observational data. Series in applied mathematics 1990, vol. 59. SIAM.
    • (1990) Series in applied mathematics , vol.59
    • Wahba, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.