메뉴 건너뛰기




Volumn 33, Issue 3, 2008, Pages 747-756

Approximate minimization of the regularized expected error over kernel models

Author keywords

Convex functionals; Expected error; Kernel methods; Model complexity; Rates of convergence; Suboptimal solutions

Indexed keywords

CONVEX FUNCTIONALS; EXPECTED ERROR; KERNEL METHODS; MODEL COMPLEXITY; RATES OF CONVERGENCE; SUBOPTIMAL SOLUTIONS;

EID: 61349203972     PISSN: 0364765X     EISSN: 15265471     Source Type: Journal    
DOI: 10.1287/moor.1080.0317     Document Type: Article
Times cited : (26)

References (41)
  • 2
    • 0000874557 scopus 로고
    • Theoretical foundations of the potential function method in pattern recognition learning
    • Aizerman, M. A., E. M. Braverman, L. I. Rozonoer. 1964. Theoretical foundations of the potential function method in pattern recognition learning. Automation Remote Control 25 821-837.
    • (1964) Automation Remote Control , vol.25 , pp. 821-837
    • Aizerman, M.A.1    Braverman, E.M.2    Rozonoer, L.I.3
  • 3
    • 0036506049 scopus 로고    scopus 로고
    • Optimization-based learning with bounded error for feedforward neural networks
    • Alessandri, A., M. Sanguineti, M. Maggiore. 2002. Optimization-based learning with bounded error for feedforward neural networks. IEEE Trans. Neural Networks 13(2) 261-273.
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.2 , pp. 261-273
    • Alessandri, A.1    Sanguineti, M.2    Maggiore, M.3
  • 4
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn, N. 1950. Theory of reproducing kernels. Trans. Amer: Math. Soc. 68(3) 337-404.
    • (1950) Trans. Amer: Math. Soc , vol.68 , Issue.3 , pp. 337-404
    • Aronszajn, N.1
  • 5
    • 0027599793 scopus 로고
    • Universal approximation bounds for superpositions of a sigmoidal function
    • Barron, A. R. 1993. Universal approximation bounds for superpositions of a sigmoidal function. IEEE Trans. Inform. Theory 39(33) 930-945.
    • (1993) IEEE Trans. Inform. Theory , vol.39 , Issue.33 , pp. 930-945
    • Barron, A.R.1
  • 8
    • 77957009494 scopus 로고
    • Linear inverse and ill-posed problems
    • Bertero, M. 1989. Linear inverse and ill-posed problems. Adv. Electronics Electron Phys. 75 1-120.
    • (1989) Adv. Electronics Electron Phys , vol.75 , pp. 1-120
    • Bertero, M.1
  • 12
    • 0037261148 scopus 로고    scopus 로고
    • Analysis of Tikhonov regularization for function approximation by neural networks
    • Burger, M., A. Neubauer. 2003. Analysis of Tikhonov regularization for function approximation by neural networks. Neural Networks 16 79-90.
    • (2003) Neural Networks , vol.16 , pp. 79-90
    • Burger, M.1    Neubauer, A.2
  • 14
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., V. Vapnik. 1995. Support-vector networks. Machine Learn. 20 273-297.
    • (1995) Machine Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 15
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker, F., S. Smale. 2002. On the mathematical foundations of learning. Bull. AMS 39 1-49.
    • (2002) Bull. AMS , vol.39 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 20
    • 0000249788 scopus 로고    scopus 로고
    • An equivalence between sparse approximation and support vector machines
    • Girosi, F. 1998. An equivalence between sparse approximation and support vector machines. Neural Comput. 10 1455-1480.
    • (1998) Neural Comput , vol.10 , pp. 1455-1480
    • Girosi, F.1
  • 21
    • 0001219859 scopus 로고
    • Regularization theory and neural networks architectures
    • Girosi, F., M. Jones, T. Poggio. 1995. Regularization theory and neural networks architectures. Neural Comput. 7 219-269.
    • (1995) Neural Comput , vol.7 , pp. 219-269
    • Girosi, F.1    Jones, M.2    Poggio, T.3
  • 23
    • 0001546764 scopus 로고    scopus 로고
    • Convergent on-line algorithms for supervised learning in neural networks
    • Grippo, L. 2000. Convergent on-line algorithms for supervised learning in neural networks. IEEE Trans. Neural Networks 11(6) 1284-1299.
    • (2000) IEEE Trans. Neural Networks , vol.11 , Issue.6 , pp. 1284-1299
    • Grippo, L.1
  • 24
    • 0000796112 scopus 로고
    • A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training
    • Jones, L. K. 1992. A simple lemma on greedy approximation in Hilbert space and convergence rates for projection pursuit regression and neural network training. Ann. Statist. 20(1) 608-613.
    • (1992) Ann. Statist , vol.20 , Issue.1 , pp. 608-613
    • Jones, L.K.1
  • 25
    • 0000406385 scopus 로고
    • A correspondence between Bayesian estimation on stochastic processes and smoothing by splines
    • Kimeldorf, G. S., G. Wahba. 1970. A correspondence between Bayesian estimation on stochastic processes and smoothing by splines. Ann. Math. Statist. 41(2) 495-502.
    • (1970) Ann. Math. Statist , vol.41 , Issue.2 , pp. 495-502
    • Kimeldorf, G.S.1    Wahba, G.2
  • 26
    • 0015000439 scopus 로고
    • Some results on Tchebyceffian spline functions
    • Kimeldorf, G. S., G. Wahba. 1971. Some results on Tchebyceffian spline functions. J. Math. Anal. Appl. 33(1) 82-95.
    • (1971) J. Math. Anal. Appl , vol.33 , Issue.1 , pp. 82-95
    • Kimeldorf, G.S.1    Wahba, G.2
  • 27
    • 0036165028 scopus 로고    scopus 로고
    • Comparison of worst-case errors in linear and neural network approximation
    • Kůrková, V., M. Sanguineti. 2002. Comparison of worst-case errors in linear and neural network approximation. IEEE Trans. Inform. Theory 48(1) 264-275.
    • (2002) IEEE Trans. Inform. Theory , vol.48 , Issue.1 , pp. 264-275
    • Kůrková, V.1    Sanguineti, M.2
  • 28
    • 18744392546 scopus 로고    scopus 로고
    • Error estimates for approximate optimization by the extended Ritz method
    • Kůrková, V., M. Sanguineti. 2005a. Error estimates for approximate optimization by the extended Ritz method. SIAM J. Optim. 15(2) 261-287.
    • (2005) SIAM J. Optim , vol.15 , Issue.2 , pp. 261-287
    • Kůrková, V.1    Sanguineti, M.2
  • 29
    • 18144390163 scopus 로고    scopus 로고
    • Learning with generalization capability by kernel methods of bounded complexity
    • Kůrková, V., M. Sanguineti. 2005b. Learning with generalization capability by kernel methods of bounded complexity. J. Complexity 21 350-367.
    • (2005) J. Complexity , vol.21 , pp. 350-367
    • Kůrková, V.1    Sanguineti, M.2
  • 30
    • 0343118761 scopus 로고    scopus 로고
    • Estimates of the number of hidden units and variation with respect to half-spaces
    • Kůrková, V., P. C. Kainen, V. Kreinovich. 1997. Estimates of the number of hidden units and variation with respect to half-spaces. Neural Networks 10(6) 1061-1068.
    • (1997) Neural Networks , vol.10 , Issue.6 , pp. 1061-1068
    • Kůrková, V.1    Kainen, P.C.2    Kreinovich, V.3
  • 31
    • 0000461110 scopus 로고
    • An approach to time series analysis
    • Parzen, E. 1961. An approach to time series analysis. Ann. Math. Statist. 32 951-989.
    • (1961) Ann. Math. Statist , vol.32 , pp. 951-989
    • Parzen, E.1
  • 33
    • 0003345901 scopus 로고
    • Remarques sur un resultat non publié de B. Maurey
    • École Polytechnique, Centre de Mathématiques, Palaiseau, France
    • Pisier, G. 1980-81. Remarques sur un resultat non publié de B. Maurey. Seminaire d'Analyse Fonctionelle I(12). École Polytechnique, Centre de Mathématiques, Palaiseau, France.
    • (1980) Seminaire d'Analyse Fonctionelle I
    • Pisier, G.1
  • 34
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • Poggio, T., F. Girosi. 1990. Networks for approximation and learning. Proc. IEEE 78(9) 1481-1497.
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2
  • 35
    • 0242705996 scopus 로고    scopus 로고
    • The mathematics of learning: Dealing with data
    • Poggio, T., S. Smale. 2003. The mathematics of learning: Dealing with data. Notices of the AMS 50(5) 537-544.
    • (2003) Notices of the AMS , vol.50 , Issue.5 , pp. 537-544
    • Poggio, T.1    Smale, S.2
  • 37
    • 0001743201 scopus 로고
    • Metric spaces and completely monotone functions
    • Schönberg, I. J. 1938. Metric spaces and completely monotone functions. Ann. Math. 39(4) 811-841.
    • (1938) Ann. Math , vol.39 , Issue.4 , pp. 811-841
    • Schönberg, I.J.1
  • 38
    • 0001300994 scopus 로고
    • Solutions of incorrectly formulated problems and the regularization method
    • Tikhonov, A. N. 1963. Solutions of incorrectly formulated problems and the regularization method. Soviet Math. Dokl. 4 1035-1038.
    • (1963) Soviet Math. Dokl , vol.4 , pp. 1035-1038
    • Tikhonov, A.N.1
  • 41
    • 0033266803 scopus 로고
    • Rates of convergence for a class of global stochastic optimization algorithms
    • Yin, G. 1963. Rates of convergence for a class of global stochastic optimization algorithms. SIAM J. Optim. 10 99-120.
    • (1963) SIAM J. Optim , vol.10 , pp. 99-120
    • Yin, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.