메뉴 건너뛰기




Volumn 27, Issue 7, 2011, Pages

Extrapolation in variable RKHSs with application to the blood glucose reading

Author keywords

[No Author keywords available]

Indexed keywords

ADAPTIVE REGULARIZATION; BLOOD GLUCOSE; BLOOD GLUCOSE CONCENTRATION; CLINICAL DATA; DIABETIC PATIENT; NUMERICAL EXPERIMENTS; REGULARIZATION PARAMETERS; REGULARIZATION PROCEDURE;

EID: 79959756904     PISSN: 02665611     EISSN: 13616420     Source Type: Journal    
DOI: 10.1088/0266-5611/27/7/075010     Document Type: Article
Times cited : (11)

References (22)
  • 1
    • 5844297152 scopus 로고
    • Theory of reproducing kernels
    • Aronszajn N 1950 Theory of reproducing kernels Trans. Am. Math. Soc. 68 337-404
    • (1950) Trans. Am. Math. Soc. , vol.68 , Issue.3 , pp. 337-404
    • Aronszajn, N.1
  • 2
    • 33846829559 scopus 로고    scopus 로고
    • On regularization algorithms in learning theory
    • DOI 10.1016/j.jco.2006.07.001, PII S0885064X06000781
    • Bauer F, Pereverzev S V and Rosasco L 2007 On regularization algorithms in learning theory J. Complexity 23 52-72 (Pubitemid 46217137)
    • (2007) Journal of Complexity , vol.23 , Issue.1 , pp. 52-72
    • Bauer, F.1    Pereverzev, S.2    Rosasco, L.3
  • 3
    • 0023205574 scopus 로고
    • Evaluating clinical accuracy of systems for self-monitoring of blood glucose
    • Clarke W, Cox D, Gonder Frederick L, Carter and Pohl S 1987 Evaluating clinical accuracy of systems for self-monitoring of blood glucose J. Diabetes Care 10 622-28 (Pubitemid 17158937)
    • (1987) Diabetes Care , vol.10 , Issue.5 , pp. 622-628
    • Clarke, W.L.1    Cox, D.2    Gonder-Frederick, L.A.3    Carter, W.4    Pohl, S.L.5
  • 4
    • 0036071370 scopus 로고    scopus 로고
    • On the mathematical foundations of learning
    • Cucker F and Smale S 2001 On the mathematical foundations of learning Bull. Am. Math. Soc. 39 1-49
    • (2001) Bull. Am. Math. Soc. , vol.39 , Issue.1 , pp. 1-49
    • Cucker, F.1    Smale, S.2
  • 5
    • 77953897681 scopus 로고    scopus 로고
    • Adaptive kernel methods using the balancing principle
    • De Vito E, Pereverzev S V and Rosasco L 2010 Adaptive kernel methods using the balancing principle Found. Comput. Math. 10 455-79
    • (2010) Found. Comput. Math. , vol.10 , Issue.4 , pp. 455-479
    • De Vito, E.1    Pereverzev, S.V.2    Rosasco, L.3
  • 7
    • 0034419669 scopus 로고    scopus 로고
    • Regularization networks and support vector machines
    • Evgeniou T, Pontil M and Poggio T 2000 Regularization networks and support vector machines Adv. Comput. Math. 13 1-50
    • (2000) Adv. Comput. Math. , vol.13 , Issue.1 , pp. 1-50
    • Evgeniou, T.1    Pontil, M.2    Poggio, T.3
  • 8
    • 77649133392 scopus 로고    scopus 로고
    • Reconstruction of glucose in plasma from interstitial fluid continuous glucose monitoring data: Role of sensor calibration
    • Facchinetti A, Sparacino G and Cobelli C 2007 Reconstruction of glucose in plasma from interstitial fluid continuous glucose monitoring data: role of sensor calibration J. Diabetes Sci. Technol. 1 617-23
    • (2007) J. Diabetes Sci. Technol. , vol.1 , pp. 617-623
    • Facchinetti, A.1    Sparacino, G.2    Cobelli, C.3
  • 10
    • 54749153001 scopus 로고    scopus 로고
    • On the convergence of the quasi-optimality criterion for (iterated) Tikhonov regularization
    • Kindermann S and Neubauer A 2008 On the convergence of the quasi-optimality criterion for (iterated) Tikhonov regularization Inverse Problems Imaging 2 291-9
    • (2008) Inverse Problems Imaging , vol.2 , Issue.2 , pp. 291-299
    • Kindermann, S.1    Neubauer, A.2
  • 11
    • 48649110903 scopus 로고    scopus 로고
    • Comparison of the numerical and clinical accuracy of four continuous glucose monitors
    • Kovatchev B, Anderson S, Heinemann L and Clarke W 2008 Comparison of the numerical and clinical accuracy of four continuous glucose monitors J. Diabetes Care 31 1160-4
    • (2008) J. Diabetes Care , vol.31 , Issue.6 , pp. 1160-1164
    • Kovatchev, B.1    Anderson, S.2    Heinemann, L.3    Clarke, W.4
  • 13
    • 23244434257 scopus 로고    scopus 로고
    • Learning the kernel function via regularization
    • Micchelli C A and Pontil M 2005 Learning the kernel function via regularization J. Machine Learning Res. 6 1099-125
    • (2005) J. Machine Learning Res. , vol.6 , pp. 1099-1125
    • Micchelli, C.A.1    Pontil, M.2
  • 16
    • 0008442191 scopus 로고
    • Use of the regularization methods in non-linear problems
    • Tikhonov A N and Glasko V B 1965 Use of the regularization methods in non-linear problems USSR Comput. Math. Math. Phys. 5 93-107
    • (1965) USSR Comput. Math. Math. Phys. , vol.5 , Issue.3 , pp. 93-107
    • Tikhonov, A.N.1    Glasko, V.B.2
  • 18
    • 33645403830 scopus 로고    scopus 로고
    • Wang H 2008 Adaptive regularization algorithms in learning theory Master Thesis Johannes Kepler University Linz
    • (2008) Master Thesis
    • Wang, H.1
  • 19
    • 0038105204 scopus 로고    scopus 로고
    • Capacity of reproducing kernel spaces in learning theory
    • Zhou D-X 2003 Capacity of reproducing kernel spaces in learning theory IEEE Trans. Inf. Theory 49 1743-52
    • (2003) IEEE Trans. Inf. Theory , vol.49 , Issue.7 , pp. 1743-1752
    • Zhou, D.-X.1
  • 20
    • 79959732656 scopus 로고    scopus 로고
    • http://www.freestylenavigator.com
  • 21
    • 79959763468 scopus 로고    scopus 로고
    • http://www.hemocue.com
  • 22
    • 79959746778 scopus 로고    scopus 로고
    • http://www.diadvisor.eu


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.