메뉴 건너뛰기




Volumn 13, Issue 8, 2011, Pages 787-796

Assessment of blood glucose predictors: The prediction-error grid analysis

Author keywords

[No Author keywords available]

Indexed keywords

ANALYTIC METHOD; ANALYTICAL PARAMETERS; ARTICLE; BLOOD GLUCOSE MONITORING; CONTINOUS GLUCOSE ERROR GRID ANALYSIS; CONTROLLED STUDY; DATA ANALYSIS; GLUCOSE BLOOD LEVEL; GOLD STANDARD; HUMAN; HYPERGLYCEMIA; INTERMETHOD COMPARISON; MATHEMATICAL COMPUTING; PREDICTION ERROR GRID ANALYSIS; PREDICTIVE VALUE; PRIORITY JOURNAL; SIMULATION;

EID: 79960434320     PISSN: 15209156     EISSN: 15578593     Source Type: Journal    
DOI: 10.1089/dia.2011.0033     Document Type: Article
Times cited : (29)

References (18)
  • 1
    • 54749149727 scopus 로고    scopus 로고
    • Hypoglycemia detection and prediction using continuous glucose monitoring-a study on hypoglycemic clamp data
    • Palerm CC, Bequette BW: Hypoglycemia detection and prediction using continuous glucose monitoring-a study on hypoglycemic clamp data. J Diabetes Sci Technol 2007;1:624-629.
    • (2007) J Diabetes Sci Technol , vol.1 , pp. 624-629
    • Palerm, C.C.1    Bequette, B.W.2
  • 3
    • 77955504672 scopus 로고    scopus 로고
    • Continuous glucose monitoring: Real-time algorithms for calibration, filtering and alarms
    • Bequette BW: Continuous glucose monitoring: real-time algorithms for calibration, filtering and alarms. J Diabetes Sci Technol 2010;4:404-418.
    • (2010) J Diabetes Sci Technol , vol.4 , pp. 404-418
    • Bequette, B.W.1
  • 6
    • 75749125065 scopus 로고    scopus 로고
    • Development of neural network for prediction of glucose concentration in Type 1 diabetes patients
    • Pappada SM, Cameron BD, Rosman PM: Development of neural network for prediction of glucose concentration in Type 1 diabetes patients. J Diabetes Sci Technol 2008;2: 792-801.
    • (2008) J Diabetes Sci Technol , vol.2 , pp. 792-801
    • Pappada, S.M.1    Cameron, B.D.2    Rosman, P.M.3
  • 7
    • 64349107874 scopus 로고    scopus 로고
    • Estimation of future glucose concentrations with subject-specific recursive linear models
    • Eren M, Cinar A, Quinn L, Smith D: Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol Ther 2009;11:243-253.
    • (2009) Diabetes Technol Ther , vol.11 , pp. 243-253
    • Eren, M.1    Cinar, A.2    Quinn, L.3    Smith, D.4
  • 8
    • 54749122334 scopus 로고    scopus 로고
    • Glucose prediction algorithms from continuous monitoring data: Assessment of accuracy via continuous glucose error-grid analysis
    • Zanderigo F, Sparacino G, Kovatchev B, Cobelli C: Glucose prediction algorithms from continuous monitoring data: assessment of accuracy via continuous glucose error-grid analysis. J Diabetes Sci Technol 2007;1:645-651.
    • (2007) J Diabetes Sci Technol , vol.1 , pp. 645-651
    • Zanderigo, F.1    Sparacino, G.2    Kovatchev, B.3    Cobelli, C.4
  • 9
    • 3342981187 scopus 로고    scopus 로고
    • Evaluating the accuracy of continuous glucose-monitoring sensors: Continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator data
    • DOI 10.2337/diacare.27.8.1922
    • Kovatchev BP, Gonder-Frederick LA, Cox DJ, Clarke WL: Evaluating the accuracy of continuous glucose-monitoring sensors: continuous glucose-error grid analysis illustrated by TheraSense Freestyle Navigator. Diabetes Care 2004;27: 1922-1928. (Pubitemid 38989233)
    • (2004) Diabetes Care , vol.27 , Issue.8 , pp. 1922-1928
    • Kovatchev, B.P.1    Gonder-Frederick, L.A.2    Cox, D.J.3    Clarke, W.L.4
  • 10
    • 27644587693 scopus 로고    scopus 로고
    • The Original Clarke Error Grid Analysis (EGA)
    • DOI 10.1089/dia.2005.7.776
    • Clarke WL: The original Clarke error grid analysis (EGA). Diabetes Technol Ther 2005;7:776-779. (Pubitemid 41572081)
    • (2005) Diabetes Technology and Therapeutics , vol.7 , Issue.5 , pp. 776-779
    • Clarke, W.L.1
  • 11
    • 59649129116 scopus 로고    scopus 로고
    • Peculiarities of the continuous glucose monitoring data stream and their impact on developing closed-loop control technology
    • Kovatchev BP, Clarke WL: Peculiarities of the continuous glucose monitoring data stream and their impact on developing closed-loop control technology. J Diabetes Sci Technol 2008;2:158-163.
    • (2008) J Diabetes Sci Technol , vol.2 , pp. 158-163
    • Kovatchev, B.P.1    Clarke, W.L.2
  • 12
    • 69949146908 scopus 로고    scopus 로고
    • In silico preclinical trials: A proof of concept in closed-loop control of type 1 diabetes
    • Kovatchev BP, Breton MD, Dalla Man C, Cobelli C: In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol 2009;3:44-55.
    • (2009) J Diabetes Sci Technol , vol.3 , pp. 44-55
    • Kovatchev, B.P.1    Breton, M.D.2    Dalla Man, C.3    Cobelli, C.4
  • 13
    • 77953897681 scopus 로고    scopus 로고
    • Adaptive kernel methods using the balancing principle
    • De Vito E, Pereverzev SV, Rosasco L: Adaptive kernel methods using the balancing principle. Found Comput Math 2010;10:455-479.
    • (2010) Found Comput Math , vol.10 , pp. 455-479
    • De Vito, E.1    Pereverzev, S.V.2    Rosasco, L.3
  • 14
    • 84855692076 scopus 로고    scopus 로고
    • Regularized learning algorithm for prediction of blood glucose concentration in "No Action Period"
    • Nithiarasu P, Lohner R, Van Loon R, eds. Swansea, UK: CMBE
    • Pereverzev SV, Sivananthan S. Regularized learning algorithm for prediction of blood glucose concentration in "No Action Period." In: Nithiarasu P, Lohner R, Van Loon R, eds. In: 1st International Conference onMathematical andComputational Biomedical Engineering. Swansea, UK: CMBE, 2009:395-398.
    • (2009) 1st International Conference OnMathematical AndComputational Biomedical Engineering , pp. 395-398
    • Pereverzev, S.V.1    Sivananthan, S.2
  • 16
    • 79551580499 scopus 로고    scopus 로고
    • A new index to optimally design and compare CGM glucose prediction algorithms
    • Facchinetti A, Sparacino G, Trifoglio E, Cobelli C: A new index to optimally design and compare CGM glucose prediction algorithms. Diabetes Technol Ther 2011;13:111-119.
    • Diabetes Technol Ther , vol.2011 , Issue.13 , pp. 111-119
    • Facchinetti, A.1    Sparacino, G.2    Trifoglio, E.3    Cobelli, C.4
  • 17
    • 33750858128 scopus 로고    scopus 로고
    • Numerical differentiation from a viewpoint of regularization theory
    • DOI 10.1090/S0025-5718-06-01857-6, PII S0025571806018576
    • Lu S, Pereverzev SV:Numerical differentiation from a viewpoint of regularization theory. Math Comput 2006;75:1853-1870. (Pubitemid 44719734)
    • (2006) Mathematics of Computation , vol.75 , Issue.256 , pp. 1853-1870
    • Lu, S.1    Pereverzev, S.V.2
  • 18
    • 56949086279 scopus 로고    scopus 로고
    • The use of higher order finite difference schemes is not dangerous
    • MathéP, Pereverzev SV: The use of higher order finite difference schemes is not dangerous. J Complexity 2009;25:3-10.
    • (2009) J Complexity , vol.25 , pp. 3-10
    • Mathép1    Pereverzev, S.V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.