메뉴 건너뛰기




Volumn 12, Issue , 2011, Pages

Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATIC FEATURE SELECTION; FEATURE SELECTION METHODS; HIGH DIMENSIONAL DATA; MICROARRAY DATA SETS; PENALIZATION METHOD; SCIENTIFIC APPLICATIONS; SELECTION PROCEDURES; SUPPORT VECTOR MACHINE ALGORITHM;

EID: 79955683050     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-12-138     Document Type: Article
Times cited : (69)

References (34)
  • 1
    • 1542292950 scopus 로고    scopus 로고
    • Gene Selection for Cancer Classification using Support Vector Machines
    • Guyon I, Weston J, Barnhill S, Vapnik V. Gene Selection for Cancer Classification using Support Vector Machines. Machine Learning 2002, 44(3):438-443.
    • (2002) Machine Learning , vol.44 , Issue.3 , pp. 438-443
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 5
    • 0036450130 scopus 로고    scopus 로고
    • Gene selection by sequential search wrapper approaches in microarray cancer class prediction
    • Inza I, Sierra B, Blanco R, Larranaga P. Gene selection by sequential search wrapper approaches in microarray cancer class prediction. ournal of Intelligent and Fuzzy Systems 2002, 12:25-33.
    • (2002) ournal of Intelligent and Fuzzy Systems , vol.12 , pp. 25-33
    • Inza, I.1    Sierra, B.2    Blanco, R.3    Larranaga, P.4
  • 6
    • 22944466045 scopus 로고    scopus 로고
    • Molecular diagnosis: classification, model selection and performance evaluation
    • Markowetz F, Spang R. Molecular diagnosis: classification, model selection and performance evaluation. Methods Inf Med 2005, 44(3):438-443.
    • (2005) Methods Inf Med , vol.44 , Issue.3 , pp. 438-443
    • Markowetz, F.1    Spang, R.2
  • 10
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machines with non-convex penalty
    • 10.1093/bioinformatics/bti736, 16249260
    • Zhang HH, Ahn J, Lin X, Park C. Gene selection using support vector machines with non-convex penalty. Bioinformatics 2006, 22(1):88-95. 10.1093/bioinformatics/bti736, 16249260.
    • (2006) Bioinformatics , vol.22 , Issue.1 , pp. 88-95
    • Zhang, H.H.1    Ahn, J.2    Lin, X.3    Park, C.4
  • 11
    • 29244448340 scopus 로고    scopus 로고
    • Microarray data analysis: from disarray to consolidation and consensus
    • 10.1038/nrg1749, 16369572
    • Allison DB, Cui X, Page GP, Sabripour M. Microarray data analysis: from disarray to consolidation and consensus. Nature Reviews Genetics 2006, 7:55-65. 10.1038/nrg1749, 16369572.
    • (2006) Nature Reviews Genetics , vol.7 , pp. 55-65
    • Allison, D.B.1    Cui, X.2    Page, G.P.3    Sabripour, M.4
  • 12
    • 33644844520 scopus 로고    scopus 로고
    • Microarray technology: beyond transcript profiling and genotype analysis
    • 10.1038/nrg1809, 16485019
    • Hoheisel JD. Microarray technology: beyond transcript profiling and genotype analysis. Nature Reviews Genetics 2006, 7:200-210. 10.1038/nrg1809, 16485019.
    • (2006) Nature Reviews Genetics , vol.7 , pp. 200-210
    • Hoheisel, J.D.1
  • 13
    • 0035375137 scopus 로고    scopus 로고
    • Computational analysis of microarray data
    • Quackenbush J. Computational analysis of microarray data. Nature Review Genetics 2001, 2:418-427.
    • (2001) Nature Review Genetics , vol.2 , pp. 418-427
    • Quackenbush, J.1
  • 15
    • 33750124478 scopus 로고    scopus 로고
    • Efficient parameter selection for support vector machines in classification and regression via model-based global optimization
    • Froehlich H, Zell A. Efficient parameter selection for support vector machines in classification and regression via model-based global optimization. In Proc Int Joint Conf Neural Networks 2005, 1431-1438.
    • (2005) In Proc Int Joint Conf Neural Networks , pp. 1431-1438
    • Froehlich, H.1    Zell, A.2
  • 16
    • 77949506233 scopus 로고    scopus 로고
    • Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data
    • 10.1371/journal.pone.0008250, 2789385, 20011240
    • Liu Q, Sung AH, Chen Z, Liu J, Huang X, Deng Y. Feature selection and classification of MAQC-II breast cancer and multiple myeloma microarray gene expression data. PLoS ONE 2009, 4:e8250. 10.1371/journal.pone.0008250, 2789385, 20011240.
    • (2009) PLoS ONE , vol.4
    • Liu, Q.1    Sung, A.H.2    Chen, Z.3    Liu, J.4    Huang, X.5    Deng, Y.6
  • 17
    • 38849091390 scopus 로고    scopus 로고
    • Hybrid huberized support vector machines for microarray classification and gene selection
    • 10.1093/bioinformatics/btm579, 18175770
    • Wang L, Zhu J, Zou H. Hybrid huberized support vector machines for microarray classification and gene selection. Bioinformatics 2008, 24(3):412-419. 10.1093/bioinformatics/btm579, 18175770.
    • (2008) Bioinformatics , vol.24 , Issue.3 , pp. 412-419
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 20
    • 84888280490 scopus 로고    scopus 로고
    • Comments onWavelets in Statistics. A Review by Antoniadis
    • Comments onWavelets in Statistics. A Review by Antoniadis. 1997,
    • (1997)
  • 21
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan J, Li R. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of American Statistical Association 2001, 96:1348-1360.
    • (2001) Journal of American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 22
    • 33746154240 scopus 로고    scopus 로고
    • The double regularized support vector machine
    • Wang L, Zhu J, Zou H. The double regularized support vector machine. Statistica Sinica 2006, 16:589-615.
    • (2006) Statistica Sinica , vol.16 , pp. 589-615
    • Wang, L.1    Zhu, J.2    Zou, H.3
  • 23
    • 0000561424 scopus 로고    scopus 로고
    • Efficient global optimization of expensive black-box functions
    • Jones D, Schonlau M, Welch W. Efficient global optimization of expensive black-box functions. Journal of Global Optimization 1998, 13:455-492.
    • (1998) Journal of Global Optimization , vol.13 , pp. 455-492
    • Jones, D.1    Schonlau, M.2    Welch, W.3
  • 25
    • 67649214465 scopus 로고    scopus 로고
    • PenalizedSVM: a R-package for feature selection SVM classification
    • 10.1093/bioinformatics/btp286, 19398451
    • Becker N, Werft W, Toedt G, Lichter P, Benner A. penalizedSVM: a R-package for feature selection SVM classification. Bioinformatics 2009, 25(13):1711-1712. 10.1093/bioinformatics/btp286, 19398451.
    • (2009) Bioinformatics , vol.25 , Issue.13 , pp. 1711-1712
    • Becker, N.1    Werft, W.2    Toedt, G.3    Lichter, P.4    Benner, A.5
  • 27
    • 0003710380 scopus 로고    scopus 로고
    • LIBSVM: a Library for Support Vector Machines
    • Chang C, Lin C. LIBSVM: a Library for Support Vector Machines. 2001, http://www.csie.ntu.edu.tw/~cjlin/libsvm
    • (2001)
    • Chang, C.1    Lin, C.2
  • 28
    • 0003670427 scopus 로고    scopus 로고
    • Estimating false discovery rates under dependence, with applications to DNA microarrays
    • Tech rep., Stanford University: Stanford Technical Report
    • Storey JD, Tibshirani R. Estimating false discovery rates under dependence, with applications to DNA microarrays. 2001, Tech rep., Stanford University: Stanford Technical Report.
    • (2001)
    • Storey, J.D.1    Tibshirani, R.2
  • 30
    • 0034732869 scopus 로고    scopus 로고
    • Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests
    • 10.1016/S0167-5877(00)00115-X, 10802332
    • Greiner M, Pfeiffer D, Smith RD. Principles and practical application of the receiver-operating characteristic analysis for diagnostic tests. Preventive Veterinary Medicine 2000, 45(1-2):23-41. 10.1016/S0167-5877(00)00115-X, 10802332., http://www.sciencedirect.com/science/article/B6TBK-408BJCN-3/2/3a4753dc80ec448666ef990ee4c33078
    • (2000) Preventive Veterinary Medicine , vol.45 , Issue.1-2 , pp. 23-41
    • Greiner, M.1    Pfeiffer, D.2    Smith, R.D.3
  • 34
    • 77955886691 scopus 로고    scopus 로고
    • Integration Of Pathway Knowledge Into A Reweighted Recursive Feature Elimination Approach For Risk Stratification Of Cancer Patients
    • 10.1093/bioinformatics/btq345, 20591905
    • Johannes M, Brase JC, Froehlich H, Gade S, Gehrmann M, Faelth M, Sueltmann H, Beissbarth T. Integration Of Pathway Knowledge Into A Reweighted Recursive Feature Elimination Approach For Risk Stratification Of Cancer Patients. Bioinformatics 2010, 26(17):2136-2144. 10.1093/bioinformatics/btq345, 20591905.
    • (2010) Bioinformatics , vol.26 , Issue.17 , pp. 2136-2144
    • Johannes, M.1    Brase, J.C.2    Froehlich, H.3    Gade, S.4    Gehrmann, M.5    Faelth, M.6    Sueltmann, H.7    Beissbarth, T.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.