메뉴 건너뛰기




Volumn 27, Issue 10, 2011, Pages 1442-1443

pathClass: An R-package for integration of pathway knowledge into support vector machines for biomarker discovery

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER;

EID: 79955757477     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btr157     Document Type: Article
Times cited : (17)

References (14)
  • 1
    • 0004020376 scopus 로고
    • Princeton University Press, Princeton, New Jersey
    • Bellman,R. (1961) Adaptive Control Processes. Princeton University Press, Princeton, New Jersey.
    • (1961) Adaptive Control Processes
    • Bellman, R.1
  • 2
    • 61449157892 scopus 로고    scopus 로고
    • Incorporating pathway information into boosting estimation of high-dimensional risk prediction models
    • Binder,H. and Schumacher,M. (2009) Incorporating pathway information into boosting estimation of high-dimensional risk prediction models. BMC Bioinformatics, 10, 18.
    • (2009) BMC Bioinformatics , vol.10 , pp. 18
    • Binder, H.1    Schumacher, M.2
  • 4
    • 35348891430 scopus 로고    scopus 로고
    • Network-based classification of breast cancer metastasis
    • Chuang,H.-Y. et al. (2007) Network-based classification of breast cancer metastasis. Mol. Syst. Biol., 3, 10.
    • (2007) Mol. Syst. Biol. , vol.3 , pp. 10
    • Chuang, H.-Y.1
  • 5
    • 13444282534 scopus 로고    scopus 로고
    • Outcome signature genes in breast cancer: is there a unique set?
    • Ein-Dor,L. et al. (2005) Outcome signature genes in breast cancer: is there a unique set? Bioinformatics, 21, 171-178.
    • (2005) Bioinformatics , vol.21 , pp. 171-178
    • Ein-Dor, L.1
  • 6
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub,T.R. et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 7
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon,I. et al. (2002) Gene selection for cancer classification using support vector machines. Mach. Learn., 46, 389-422.
    • (2002) Mach. Learn. , vol.46 , pp. 389-422
    • Guyon, I.1
  • 8
    • 77955886691 scopus 로고    scopus 로고
    • Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients
    • Johannes,M. et al. (2010) Integration of pathway knowledge into a reweighted recursive feature elimination approach for risk stratification of cancer patients. Bioinformatics, 26, 2136-2144.
    • (2010) Bioinformatics , vol.26 , pp. 2136-2144
    • Johannes, M.1
  • 9
    • 27644503675 scopus 로고    scopus 로고
    • Generank: using search engine technology for the analysis of microarray experiments
    • Morrison,J.L. et al. (2005) Generank: using search engine technology for the analysis of microarray experiments. BMC Bioinformatics, 6, 233.
    • (2005) BMC Bioinformatics , vol.6 , pp. 233
    • Morrison, J.L.1
  • 10
    • 79952239478 scopus 로고    scopus 로고
    • Leveraging external knowledge on molecular interactions in classification methods for risk prediction of patients
    • Porzelius,C. et al. (2011) Leveraging external knowledge on molecular interactions in classification methods for risk prediction of patients. Biomet. J., 53, 190-201.
    • (2011) Biomet. J. , vol.53 , pp. 190-201
    • Porzelius, C.1
  • 11
    • 33847162049 scopus 로고    scopus 로고
    • Classification of microarray data using gene networks
    • Rapaport,F. et al. (2007) Classification of microarray data using gene networks. BMC Bioinformatics, 8, 35.
    • (2007) BMC Bioinformatics , vol.8 , pp. 35
    • Rapaport, F.1
  • 12
    • 18944393902 scopus 로고    scopus 로고
    • A compendium to ensure computational reproducibility in high-dimensional classification tasks
    • Article 37
    • Ruschhaupt,M. et al. (2004) A compendium to ensure computational reproducibility in high-dimensional classification tasks. Stat. Appl. Genet. Mol. Biol., 3, Article 37.
    • (2004) Stat. Appl. Genet. Mol. Biol. , pp. 3
    • Ruschhaupt, M.1
  • 13
    • 60849119837 scopus 로고    scopus 로고
    • Cma - a comprehensive bioconductor package for supervised classification with high dimensional data
    • Slawski,M. et al. (2008) Cma - a comprehensive bioconductor package for supervised classification with high dimensional data. BMC Bioinformatics, 9, 439.
    • (2008) BMC Bioinformatics , vol.9 , pp. 439
    • Slawski, M.1
  • 14
    • 60849121073 scopus 로고    scopus 로고
    • Network-based support vector machine for classification of microarray samples
    • Zhu,Y. et al. (2009) Network-based support vector machine for classification of microarray samples. BMC Bioinformatics, 10 (Suppl. 1), S21.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 1
    • Zhu, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.