-
1
-
-
84899010634
-
Model selection for support vector machines
-
S. Solla, T. Leen, and K.-R. Müller, editors, Cambridge, MA. MIT Press
-
O. Chapelle and V. Vapnik. Model selection for Support Vector Machines. In S. Solla, T. Leen, and K.-R. Müller, editors, Adv. Neural Inf. Proc. Syst. 12, Cambridge, MA, 2000. MIT Press.
-
(2000)
Adv. Neural Inf. Proc. Syst.
, vol.12
-
-
Chapelle, O.1
Vapnik, V.2
-
2
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
O. Chapelle, V. Vapnik, O. Bousqet, and S. Mukherjee. Choosing Multiple Parameters for Support Vector Machines. Machine Learning, 46(1):131 - 159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousqet, O.3
Mukherjee, S.4
-
3
-
-
0346250790
-
Practical selection of svm parameters and noise estimation for svm regression
-
V. Cherkassky and Y. Ma. Practical selection of svm parameters and noise estimation for svm regression. Neural Networks, 17(1):113 - 126, 2004.
-
(2004)
Neural Networks
, vol.17
, Issue.1
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
-
4
-
-
0038891993
-
Sparse online gaussian processes
-
L. Csato and M. Opper. Sparse online gaussian processes. Neural Computation, 14(3):641 - 669, 2002.
-
(2002)
Neural Computation
, vol.14
, Issue.3
, pp. 641-669
-
-
Csato, L.1
Opper, M.2
-
6
-
-
84925605946
-
The entire regularization path for support vector machines
-
T. Hastie, S. Rosset, R. Tishbirani, and J. Zhu. The entire regularization path for support vector machines. J. Machine Learning Research, 5:1391 - 1415, 2004.
-
(2004)
J. Machine Learning Research
, vol.5
, pp. 1391-1415
-
-
Hastie, T.1
Rosset, S.2
Tishbirani, R.3
Zhu, J.4
-
7
-
-
0000561424
-
Efficient global optimization of expensive black-box functions
-
D. Jones, M. Schonlau, and W. Welch. Efficient global optimization of expensive black-box functions. J. Global Optimization, 13:455 - 492, 1998.
-
(1998)
J. Global Optimization
, vol.13
, pp. 455-492
-
-
Jones, D.1
Schonlau, M.2
Welch, W.3
-
8
-
-
0034271876
-
The evidence framework applied to support vector machines
-
J. Kwok. The evidence framework applied to support vector machines. IEEE Transactions on Neural Networks, 11(5):1162 - 1173, 2000.
-
(2000)
IEEE Transactions on Neural Networks
, vol.11
, Issue.5
, pp. 1162-1173
-
-
Kwok, J.1
-
10
-
-
0037905968
-
Gaussian processes - A replacement for supervised neural networks?
-
Lecture note
-
D. MacKay. Gaussian Processes - A Replacement for Supervised Neural Networks? In Proc. Neural Inf. Proc. Syst., 1997. Lecture note.
-
(1997)
Proc. Neural Inf. Proc. Syst.
-
-
MacKay, D.1
-
11
-
-
0141869869
-
A pattern search method for model selection of support vector regression
-
M. Momma and K. Bennett. A pattern search method for model selection of support vector regression. In SIAM Conf. on Data Mining, 2002.
-
(2002)
SIAM Conf. on Data Mining
-
-
Momma, M.1
Bennett, K.2
-
12
-
-
0027678534
-
Lipschitzian optimization without the lipschitz constant
-
C. Perttunnen, D. Jones, and B. Stuckman. Lipschitzian optimization without the lipschitz constant. J. Optimization Theory and Application, 79(1):157 - 181, 1993.
-
(1993)
J. Optimization Theory and Application
, vol.79
, Issue.1
, pp. 157-181
-
-
Perttunnen, C.1
Jones, D.2
Stuckman, B.3
-
13
-
-
0038582147
-
Prediction with gaussian processes: From linear regression to linear prediction and beyond
-
Aston University, UK
-
C. Willams. Prediction with gaussian processes: From linear regression to linear prediction and beyond. Technical Report NRG/97/012, Aston University, UK, 1997.
-
(1997)
Technical Report
, vol.NRG-97-012
-
-
Willams, C.1
|