-
1
-
-
33847621554
-
Uracil in DNA-general mutagen, but normal intermediate in acquired immunity
-
Kavli B., Otterlei M., Slupphaug G., Krokan H.E. Uracil in DNA-general mutagen, but normal intermediate in acquired immunity. DNA Repair (Amst.) 2007, 6:505-516.
-
(2007)
DNA Repair (Amst.)
, vol.6
, pp. 505-516
-
-
Kavli, B.1
Otterlei, M.2
Slupphaug, G.3
Krokan, H.E.4
-
2
-
-
34249790004
-
Molecular mechanisms of antibody somatic hypermutation
-
Di Noia J.M., Neuberger M.S. Molecular mechanisms of antibody somatic hypermutation. Annu. Rev. Biochem. 2007, 76:1-22.
-
(2007)
Annu. Rev. Biochem.
, vol.76
, pp. 1-22
-
-
Di Noia, J.M.1
Neuberger, M.S.2
-
4
-
-
0033602148
-
Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors
-
Haushalter K.A., Todd Stukenberg M.W., Kirschner M.W., Verdine G.L. Identification of a new uracil-DNA glycosylase family by expression cloning using synthetic inhibitors. Curr. Biol. 1999, 9:174-185.
-
(1999)
Curr. Biol.
, vol.9
, pp. 174-185
-
-
Haushalter, K.A.1
Todd Stukenberg, M.W.2
Kirschner, M.W.3
Verdine, G.L.4
-
5
-
-
60049089790
-
Uracil in DNA and its processing by different DNA glycosylases
-
Visnes T., Doseth B., Pettersen H.S., Hagen L., Sousa M.M., Akbari M., Otterlei M., Kavli B., Slupphaug G., Krokan H.E. Uracil in DNA and its processing by different DNA glycosylases. Philos. Trans. Roy. Soc. Lond. B: Biol. Sci. 2009, 364:563-568.
-
(2009)
Philos. Trans. Roy. Soc. Lond. B: Biol. Sci.
, vol.364
, pp. 563-568
-
-
Visnes, T.1
Doseth, B.2
Pettersen, H.S.3
Hagen, L.4
Sousa, M.M.5
Akbari, M.6
Otterlei, M.7
Kavli, B.8
Slupphaug, G.9
Krokan, H.E.10
-
6
-
-
0035421186
-
Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase
-
Nilsen H., Haushalter K.A., Robins P., Barnes D.E., Verdine G.L., Lindahl T. Excision of deaminated cytosine from the vertebrate genome: role of the SMUG1 uracil-DNA glycosylase. EMBO J. 2001, 20:4278-4286.
-
(2001)
EMBO J.
, vol.20
, pp. 4278-4286
-
-
Nilsen, H.1
Haushalter, K.A.2
Robins, P.3
Barnes, D.E.4
Verdine, G.L.5
Lindahl, T.6
-
7
-
-
18644363009
-
HUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup
-
Kavli B., Sundheim O., Akbari M., Otterlei M., Nilsen H., Skorpen F., Aas P.A., Hagen L., Krokan H.E., Slupphaug G. hUNG2 is the major repair enzyme for removal of uracil from U:A matches, U:G mismatches, and U in single-stranded DNA, with hSMUG1 as a broad specificity backup. J. Biol. Chem. 2002, 277:39926-39936.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 39926-39936
-
-
Kavli, B.1
Sundheim, O.2
Akbari, M.3
Otterlei, M.4
Nilsen, H.5
Skorpen, F.6
Aas, P.A.7
Hagen, L.8
Krokan, H.E.9
Slupphaug, G.10
-
8
-
-
0037509930
-
Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions
-
Masaoka A., Matsubara M., Hasegawa R., Tanaka T., Kurisu S., Terato H., Ohyama Y., Karino N., Matsuda A., Ide H. Mammalian 5-formyluracil-DNA glycosylase. 2. Role of SMUG1 uracil-DNA glycosylase in repair of 5-formyluracil and other oxidized and deaminated base lesions. Biochemistry 2003, 42:5003-5012.
-
(2003)
Biochemistry
, vol.42
, pp. 5003-5012
-
-
Masaoka, A.1
Matsubara, M.2
Hasegawa, R.3
Tanaka, T.4
Kurisu, S.5
Terato, H.6
Ohyama, Y.7
Karino, N.8
Matsuda, A.9
Ide, H.10
-
9
-
-
34547645005
-
Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms
-
Pettersen H.S., Sundheim O., Gilljam K.M., Slupphaug G., Krokan H.E., Kavli B. Uracil-DNA glycosylases SMUG1 and UNG2 coordinate the initial steps of base excision repair by distinct mechanisms. Nucleic Acids Res. 2007, 35:3879-3892.
-
(2007)
Nucleic Acids Res.
, vol.35
, pp. 3879-3892
-
-
Pettersen, H.S.1
Sundheim, O.2
Gilljam, K.M.3
Slupphaug, G.4
Krokan, H.E.5
Kavli, B.6
-
10
-
-
22344453737
-
B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil
-
Kavli B., Andersen S., Otterlei M., Liabakk N.B., Imai K., Fischer A., Durandy A., Krokan H.E., Slupphaug G. B cells from hyper-IgM patients carrying UNG mutations lack ability to remove uracil from ssDNA and have elevated genomic uracil. J. Exp. Med. 2005, 201:2011-2021.
-
(2005)
J. Exp. Med.
, vol.201
, pp. 2011-2021
-
-
Kavli, B.1
Andersen, S.2
Otterlei, M.3
Liabakk, N.B.4
Imai, K.5
Fischer, A.6
Durandy, A.7
Krokan, H.E.8
Slupphaug, G.9
-
11
-
-
79955775951
-
Uracil-DNA glycosylase in base excision repair and adaptive immunity: species differences between man and mouse
-
Doseth B., Visnes T., Wallenius A., Ericsson I., Sarno A., Pettersen H.S., Flatberg A., Catterall T., Slupphaug G., Krokan H.E., Kavli B. Uracil-DNA glycosylase in base excision repair and adaptive immunity: species differences between man and mouse. J. Biol. Chem. 2011, 286:16669-16680.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 16669-16680
-
-
Doseth, B.1
Visnes, T.2
Wallenius, A.3
Ericsson, I.4
Sarno, A.5
Pettersen, H.S.6
Flatberg, A.7
Catterall, T.8
Slupphaug, G.9
Krokan, H.E.10
Kavli, B.11
-
12
-
-
0037108463
-
Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice
-
Rada C., Williams G.T., Nilsen H., Barnes D.E., Lindahl T., Neuberger M.S. Immunoglobulin isotype switching is inhibited and somatic hypermutation perturbed in UNG-deficient mice. Curr. Biol. 2002, 12:1748-1755.
-
(2002)
Curr. Biol.
, vol.12
, pp. 1748-1755
-
-
Rada, C.1
Williams, G.T.2
Nilsen, H.3
Barnes, D.E.4
Lindahl, T.5
Neuberger, M.S.6
-
13
-
-
0142092610
-
Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination
-
Imai K., Slupphaug G., Lee W.I., Revy P., Nonoyama S., Catalan N., Yel L., Forveille M., Kavli B., Krokan H.E., Ochs H.D., Fischer A., Durandy A. Human uracil-DNA glycosylase deficiency associated with profoundly impaired immunoglobulin class-switch recombination. Nat. Immunol. 2003, 4:1023-1028.
-
(2003)
Nat. Immunol.
, vol.4
, pp. 1023-1028
-
-
Imai, K.1
Slupphaug, G.2
Lee, W.I.3
Revy, P.4
Nonoyama, S.5
Catalan, N.6
Yel, L.7
Forveille, M.8
Kavli, B.9
Krokan, H.E.10
Ochs, H.D.11
Fischer, A.12
Durandy, A.13
-
14
-
-
42649124572
-
The biochemistry of somatic hypermutation
-
Peled J.U., Kuang F.L., Iglesias-Ussel M.D., Roa S., Kalis S.L., Goodman M.F., Scharff M.D. The biochemistry of somatic hypermutation. Annu. Rev. Immunol. 2008, 26:481-511.
-
(2008)
Annu. Rev. Immunol.
, vol.26
, pp. 481-511
-
-
Peled, J.U.1
Kuang, F.L.2
Iglesias-Ussel, M.D.3
Roa, S.4
Kalis, S.L.5
Goodman, M.F.6
Scharff, M.D.7
-
15
-
-
0037926476
-
Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation
-
Pham P., Bransteitter R., Petruska J., Goodman M.F. Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 2003, 424:103-107.
-
(2003)
Nature
, vol.424
, pp. 103-107
-
-
Pham, P.1
Bransteitter, R.2
Petruska, J.3
Goodman, M.F.4
-
16
-
-
10044256697
-
Somatic hypermutation: a mutational panacea
-
Tippin B., Pham P., Bransteitter R., Goodman M.F. Somatic hypermutation: a mutational panacea. Adv. Protein Chem. 2004, 69:307-335.
-
(2004)
Adv. Protein Chem.
, vol.69
, pp. 307-335
-
-
Tippin, B.1
Pham, P.2
Bransteitter, R.3
Goodman, M.F.4
-
17
-
-
1342282983
-
DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine
-
Yu K., Huang F.T., Lieber M.R. DNA substrate length and surrounding sequence affect the activation-induced deaminase activity at cytidine. J. Biol. Chem. 2004, 279:6496-6500.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 6496-6500
-
-
Yu, K.1
Huang, F.T.2
Lieber, M.R.3
-
18
-
-
17144424674
-
The mutation spectrum of purified AID is similar to the mutability index in Ramos cells and in ung(-/-)msh2(-/-) mice
-
Larijani M., Frieder D., Basit W., Martin A. The mutation spectrum of purified AID is similar to the mutability index in Ramos cells and in ung(-/-)msh2(-/-) mice. Immunogenetics 2005, 56:840-845.
-
(2005)
Immunogenetics
, vol.56
, pp. 840-845
-
-
Larijani, M.1
Frieder, D.2
Basit, W.3
Martin, A.4
-
19
-
-
0345306586
-
Characterisation of the substrate specificity of homogeneous vaccinia virus uracil-DNA glycosylase
-
Scaramozzino N., Sanz G., Crance J.M., Saparbaev M., Drillien R., Laval J., Kavli B., Garin D. Characterisation of the substrate specificity of homogeneous vaccinia virus uracil-DNA glycosylase. Nucleic Acids Res. 2003, 31:4950-4957.
-
(2003)
Nucleic Acids Res.
, vol.31
, pp. 4950-4957
-
-
Scaramozzino, N.1
Sanz, G.2
Crance, J.M.3
Saparbaev, M.4
Drillien, R.5
Laval, J.6
Kavli, B.7
Garin, D.8
-
20
-
-
6044230603
-
Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells
-
Akbari M., Otterlei M., Pena-Diaz J., Aas P.A., Kavli B., Liabakk N.B., Hagen L., Imai K., Durandy A., Slupphaug G., Krokan H.E. Repair of U/G and U/A in DNA by UNG2-associated repair complexes takes place predominantly by short-patch repair both in proliferating and growth-arrested cells. Nucleic Acids Res. 2004, 32:5486-5498.
-
(2004)
Nucleic Acids Res.
, vol.32
, pp. 5486-5498
-
-
Akbari, M.1
Otterlei, M.2
Pena-Diaz, J.3
Aas, P.A.4
Kavli, B.5
Liabakk, N.B.6
Hagen, L.7
Imai, K.8
Durandy, A.9
Slupphaug, G.10
Krokan, H.E.11
-
21
-
-
12344307152
-
Product inhibition and magnesium modulate the dual reaction mode of hOgg1
-
Morland I., Luna L., Gustad E., Seeberg E., Bjoras M. Product inhibition and magnesium modulate the dual reaction mode of hOgg1. DNA Repair (Amst.) 2005, 4:381-387.
-
(2005)
DNA Repair (Amst.)
, vol.4
, pp. 381-387
-
-
Morland, I.1
Luna, L.2
Gustad, E.3
Seeberg, E.4
Bjoras, M.5
-
22
-
-
0035451746
-
The HAP1 protein stimulates the turnover of human mismatch-specific thymine-DNA-glycosylase to process 3,N(4)-ethenocytosine residues
-
Privezentzev C.V., Saparbaev M., Laval J. The HAP1 protein stimulates the turnover of human mismatch-specific thymine-DNA-glycosylase to process 3,N(4)-ethenocytosine residues. Mutat. Res. 2001, 480-481:277-284.
-
(2001)
Mutat. Res.
, pp. 277-284
-
-
Privezentzev, C.V.1
Saparbaev, M.2
Laval, J.3
-
23
-
-
0035253515
-
Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch
-
Yang H., Clendenin W.M., Wong D., Demple B., Slupska M.M., Chiang J.H., Miller J.H. Enhanced activity of adenine-DNA glycosylase (Myh) by apurinic/apyrimidinic endonuclease (Ape1) in mammalian base excision repair of an A/GO mismatch. Nucleic Acids Res. 2001, 29:743-752.
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. 743-752
-
-
Yang, H.1
Clendenin, W.M.2
Wong, D.3
Demple, B.4
Slupska, M.M.5
Chiang, J.H.6
Miller, J.H.7
-
24
-
-
0035863739
-
Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair
-
Hill J.W., Hazra T.K., Izumi T., Mitra S. Stimulation of human 8-oxoguanine-DNA glycosylase by AP-endonuclease: potential coordination of the initial steps in base excision repair. Nucleic Acids Res. 2001, 29:430-438.
-
(2001)
Nucleic Acids Res.
, vol.29
, pp. 430-438
-
-
Hill, J.W.1
Hazra, T.K.2
Izumi, T.3
Mitra, S.4
-
25
-
-
0032167424
-
Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA
-
Parikh S.S., Mol C.D., Slupphaug G., Bharati S., Krokan H.E., Tainer J.A. Base excision repair initiation revealed by crystal structures and binding kinetics of human uracil-DNA glycosylase with DNA. EMBO J. 1998, 17:5214-5226.
-
(1998)
EMBO J.
, vol.17
, pp. 5214-5226
-
-
Parikh, S.S.1
Mol, C.D.2
Slupphaug, G.3
Bharati, S.4
Krokan, H.E.5
Tainer, J.A.6
-
28
-
-
15944381621
-
Protein-protein interactions and posttranslational modifications in mammalian base excision repair
-
Fan J., Wilson D.M. Protein-protein interactions and posttranslational modifications in mammalian base excision repair. Free Radic. Biol. Med. 2005, 38:1121-1138.
-
(2005)
Free Radic. Biol. Med.
, vol.38
, pp. 1121-1138
-
-
Fan, J.1
Wilson, D.M.2
-
29
-
-
38049034968
-
Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA
-
Hagen L., Kavli B., Sousa M.M., Torseth K., Liabakk N.B., Sundheim O., Pena-Diaz J., Otterlei M., Horning O., Jensen O.N., Krokan H.E., Slupphaug G. Cell cycle-specific UNG2 phosphorylations regulate protein turnover, activity and association with RPA. EMBO J. 2008, 27:51-61.
-
(2008)
EMBO J.
, vol.27
, pp. 51-61
-
-
Hagen, L.1
Kavli, B.2
Sousa, M.M.3
Torseth, K.4
Liabakk, N.B.5
Sundheim, O.6
Pena-Diaz, J.7
Otterlei, M.8
Horning, O.9
Jensen, O.N.10
Krokan, H.E.11
Slupphaug, G.12
-
30
-
-
77953326690
-
Direct interaction between XRCC1 and UNG2 facilitates rapid repair of uracil in DNA by XRCC1 complexes
-
Akbari M., Solvang-Garten K., Hanssen-Bauer A., Lieske N.V., Pettersen H.S., Pettersen G.K., Wilson D.M., Krokan H.E., Otterlei M. Direct interaction between XRCC1 and UNG2 facilitates rapid repair of uracil in DNA by XRCC1 complexes. DNA Repair (Amst.) 2010, 9:785-795.
-
(2010)
DNA Repair (Amst.)
, vol.9
, pp. 785-795
-
-
Akbari, M.1
Solvang-Garten, K.2
Hanssen-Bauer, A.3
Lieske, N.V.4
Pettersen, H.S.5
Pettersen, G.K.6
Wilson, D.M.7
Krokan, H.E.8
Otterlei, M.9
-
31
-
-
0029904839
-
A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA
-
Slupphaug G., Mol C.D., Kavli B., Arvai A.S., Krokan H.E., Tainer J.A. A nucleotide-flipping mechanism from the structure of human uracil-DNA glycosylase bound to DNA. Nature 1996, 384:87-92.
-
(1996)
Nature
, vol.384
, pp. 87-92
-
-
Slupphaug, G.1
Mol, C.D.2
Kavli, B.3
Arvai, A.S.4
Krokan, H.E.5
Tainer, J.A.6
-
32
-
-
0038771139
-
Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1
-
Wibley J.E., Waters T.R., Haushalter K., Verdine G.L., Pearl L.H. Structure and specificity of the vertebrate anti-mutator uracil-DNA glycosylase SMUG1. Mol. Cell. 2003, 11:1647-1659.
-
(2003)
Mol. Cell.
, vol.11
, pp. 1647-1659
-
-
Wibley, J.E.1
Waters, T.R.2
Haushalter, K.3
Verdine, G.L.4
Pearl, L.H.5
-
33
-
-
32544439248
-
SMUG1 is able to excise uracil from immunoglobulin genes: insight into mutation versus repair
-
Di Noia J.M., Rada C., Neuberger M.S. SMUG1 is able to excise uracil from immunoglobulin genes: insight into mutation versus repair. EMBO J. 2006, 25:585-595.
-
(2006)
EMBO J.
, vol.25
, pp. 585-595
-
-
Di Noia, J.M.1
Rada, C.2
Neuberger, M.S.3
-
34
-
-
37549070993
-
Dependence of antibody gene diversification on uracil excision
-
Di Noia J.M., Williams G.T., Chan D.T., Buerstedde J.M., Baldwin G.S., Neuberger M.S. Dependence of antibody gene diversification on uracil excision. J. Exp. Med. 2007, 204:3209-3219.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 3209-3219
-
-
Di Noia, J.M.1
Williams, G.T.2
Chan, D.T.3
Buerstedde, J.M.4
Baldwin, G.S.5
Neuberger, M.S.6
-
35
-
-
21844464297
-
C→T mutagenesis and gamma-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases
-
An Q., Robins P., Lindahl T., Barnes D.E. C→T mutagenesis and gamma-radiation sensitivity due to deficiency in the Smug1 and Ung DNA glycosylases. EMBO J. 2005, 24:2205-2213.
-
(2005)
EMBO J.
, vol.24
, pp. 2205-2213
-
-
An, Q.1
Robins, P.2
Lindahl, T.3
Barnes, D.E.4
-
36
-
-
4344700569
-
Replication protein A interacts with AID to promote deamination of somatic hypermutation targets
-
Chaudhuri J., Khuong C., Alt F.W. Replication protein A interacts with AID to promote deamination of somatic hypermutation targets. Nature 2004, 430:992-998.
-
(2004)
Nature
, vol.430
, pp. 992-998
-
-
Chaudhuri, J.1
Khuong, C.2
Alt, F.W.3
-
37
-
-
78650308767
-
Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes
-
Yamane A., Resch W., Kuo N., Kuchen S., Li Z., Sun H.W., Robbiani D.F., McBride K., Nussenzweig M.C., Casellas R. Deep-sequencing identification of the genomic targets of the cytidine deaminase AID and its cofactor RPA in B lymphocytes. Nat. Immunol. 2011, 12:62-69.
-
(2011)
Nat. Immunol.
, vol.12
, pp. 62-69
-
-
Yamane, A.1
Resch, W.2
Kuo, N.3
Kuchen, S.4
Li, Z.5
Sun, H.W.6
Robbiani, D.F.7
McBride, K.8
Nussenzweig, M.C.9
Casellas, R.10
-
38
-
-
0030996226
-
A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A
-
Nagelhus T.A., Haug T., Singh K.K., Keshav K.F., Skorpen F., Otterlei M., Bharati S., Lindmo T., Benichou S., Benarous R., Krokan H.E. A sequence in the N-terminal region of human uracil-DNA glycosylase with homology to XPA interacts with the C-terminal part of the 34-kDa subunit of replication protein A. J. Biol. Chem. 1997, 272:6561-6566.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 6561-6566
-
-
Nagelhus, T.A.1
Haug, T.2
Singh, K.K.3
Keshav, K.F.4
Skorpen, F.5
Otterlei, M.6
Bharati, S.7
Lindmo, T.8
Benichou, S.9
Benarous, R.10
Krokan, H.E.11
-
39
-
-
0034721654
-
Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA
-
Mer G., Bochkarev A., Gupta R., Bochkareva E., Frappier L., Ingles C.J., Edwards A.M., Chazin W.J. Structural basis for the recognition of DNA repair proteins UNG2, XPA, and RAD52 by replication factor RPA. Cell 2000, 103:449-456.
-
(2000)
Cell
, vol.103
, pp. 449-456
-
-
Mer, G.1
Bochkarev, A.2
Gupta, R.3
Bochkareva, E.4
Frappier, L.5
Ingles, C.J.6
Edwards, A.M.7
Chazin, W.J.8
-
40
-
-
0033168183
-
Post-replicative base excision repair in replication foci
-
Otterlei M., Warbrick E., Nagelhus T.A., Haug T., Slupphaug G., Akbari M., Aas P.A., Steinsbekk K., Bakke O., Krokan H.E. Post-replicative base excision repair in replication foci. EMBO J. 1999, 18:3834-3844.
-
(1999)
EMBO J.
, vol.18
, pp. 3834-3844
-
-
Otterlei, M.1
Warbrick, E.2
Nagelhus, T.A.3
Haug, T.4
Slupphaug, G.5
Akbari, M.6
Aas, P.A.7
Steinsbekk, K.8
Bakke, O.9
Krokan, H.E.10
-
41
-
-
0035834708
-
Definitive identification of mammalian 5-hydroxymethyluracil DNA N-glycosylase activity as SMUG1
-
Boorstein R.J., Cummings A., Marenstein D.R., Chan M.K., Ma Y., Neubert T.A., Brown S.M., Teebor G.W. Definitive identification of mammalian 5-hydroxymethyluracil DNA N-glycosylase activity as SMUG1. J. Biol. Chem. 2001, 276:41991-41997.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 41991-41997
-
-
Boorstein, R.J.1
Cummings, A.2
Marenstein, D.R.3
Chan, M.K.4
Ma, Y.5
Neubert, T.A.6
Brown, S.M.7
Teebor, G.W.8
-
42
-
-
0027253841
-
Consensus sequences for good and poor removal of uracil from double stranded DNA by uracil-DNA glycosylase
-
Eftedal I., Guddal P.H., Slupphaug G., Volden G., Krokan H.E. Consensus sequences for good and poor removal of uracil from double stranded DNA by uracil-DNA glycosylase. Nucleic Acids Res. 1993, 21:2095-2101.
-
(1993)
Nucleic Acids Res.
, vol.21
, pp. 2095-2101
-
-
Eftedal, I.1
Guddal, P.H.2
Slupphaug, G.3
Volden, G.4
Krokan, H.E.5
-
43
-
-
0028933306
-
Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase
-
Slupphaug G., Eftedal I., Kavli B., Bharati S., Helle N.M., Haug T., Levine D.W., Krokan H.E. Properties of a recombinant human uracil-DNA glycosylase from the UNG gene and evidence that UNG encodes the major uracil-DNA glycosylase. Biochemistry 1995, 34:128-138.
-
(1995)
Biochemistry
, vol.34
, pp. 128-138
-
-
Slupphaug, G.1
Eftedal, I.2
Kavli, B.3
Bharati, S.4
Helle, N.M.5
Haug, T.6
Levine, D.W.7
Krokan, H.E.8
|