-
2
-
-
0034296402
-
Generalized discriminant analysis using a kernel approach
-
G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel approach. Neural Computation, 12:2385-2404, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 2385-2404
-
-
Baudat, G.1
Anouar, F.2
-
6
-
-
78650516116
-
Learning linear discriminant projections for dimensionality reduction of image descriptors
-
H. Cai, K. Mikolajczyk, and J. Matas. Learning linear discriminant projections for dimensionality reduction of image descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2):338-352, 2011.
-
(2011)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.33
, Issue.2
, pp. 338-352
-
-
Cai, H.1
Mikolajczyk, K.2
Matas, J.3
-
7
-
-
0036161011
-
Choosing multiple parameters for support vector machines
-
DOI 10.1023/A:1012450327387
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosing multiple parameters for support vector machines. Machine Learning, 46:131-159, 2002. (Pubitemid 34129966)
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukherjee, S.4
-
10
-
-
24644524200
-
Visual categorization with bags of keypoints
-
G. Csurka, C. Dance, L. Fan, J. Willamowski, and C Bray. Visual categorization with bags of keypoints. In ECCV workshop on Statistical Learning in Computer Vision, 2004.
-
(2004)
ECCV Workshop on Statistical Learning in Computer Vision
-
-
Csurka, G.1
Dance, C.2
Fan, L.3
Willamowski, J.4
Bray, C.5
-
12
-
-
84921069139
-
-
M. Everingham, L. van Gool, C. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results. http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html, 2007.
-
(2007)
The PASCAL Visual Object Classes Challenge 2007 (VOC2007) Results
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.3
Winn, J.4
Zisserman, A.5
-
13
-
-
70349595784
-
-
M. Everingham, L. van Gool, C. Williams, J. Winn, and A. Zisserman. The PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results. http://www.pascal-network.org/challenges/VOC/voc2008/workshop/index.html, 2008.
-
(2008)
The PASCAL Visual Object Classes Challenge 2008 (VOC2008) Results
-
-
Everingham, M.1
Van Gool, L.2
Williams, C.3
Winn, J.4
Zisserman, A.5
-
15
-
-
33144466753
-
One-shot learning of object categories
-
DOI 10.1109/TPAMI.2006.79
-
L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of object categories. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(4):594-611, 2006. (Pubitemid 43264657)
-
(2006)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.28
, Issue.4
, pp. 594-611
-
-
Fei-Fei, L.1
Fergus, R.2
Perona, P.3
-
16
-
-
0000764772
-
The use of multiple measurements in taxonomic problems
-
R. Fisher. The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179-188, 1936.
-
(1936)
Annals of Eugenics
, vol.7
, pp. 179-188
-
-
Fisher, R.1
-
20
-
-
0036582564
-
Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel fisher discriminant analysis
-
T. Gestel, J. Suykens, G. Lanckriet, A. Lambrechts, B. Moor, and J. Vandewalle. Bayesian framework for least-squares support vector machine classifiers, gaussian processes, and kernel fisher discriminant analysis. Machine Learning, 14(5):1115-1147, 2002.
-
(2002)
Machine Learning
, vol.14
, Issue.5
, pp. 1115-1147
-
-
Gestel, T.1
Suykens, J.2
Lanckriet, G.3
Lambrechts, A.4
Moor, B.5
Vandewalle, J.6
-
21
-
-
0001219859
-
Regularization theory and neural networks architectures
-
F. Girosi, M. Jones, and T. Poggio. Regularization theory and neural networks architectures. Neural Computation, 7:219-269, 1995.
-
(1995)
Neural Computation
, vol.7
, pp. 219-269
-
-
Girosi, F.1
Jones, M.2
Poggio, T.3
-
23
-
-
34247576789
-
The pyramid match kernel: Efficient learning with sets of features
-
K. Grauman and T. Darrell. The pyramid match kernel: Efficient learning with sets of features. Journal of Machine Learning Research, 8:725-760, 2007. (Pubitemid 46677049)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 725-760
-
-
Grauman, K.1
Darrell, T.2
-
25
-
-
0000631731
-
Bayes point machines
-
DOI 10.1162/153244301753683717
-
R. Herbrich, T. Graeple, and C. Campbell. Bayes point machines. Journal of Machine Learning Research, 1:245-279, 2001. (Pubitemid 33687204)
-
(2001)
Journal of Machine Learning Research
, vol.1
, Issue.4
, pp. 245-279
-
-
Herbrich, R.1
Graepel, T.2
Campbell, C.3
-
26
-
-
0027657329
-
Semi-infinite programming: Theory, methods, and applications
-
R. Hettich and K. Kortanek. Semi-infinite programming: Theory, methods, and applications. SIAM Review, 35(3):380-429, 1993. (Pubitemid 23712350)
-
(1993)
SIAM Review
, vol.35
, Issue.3
, pp. 380-429
-
-
Hettich, R.1
Kortanek, K.O.2
-
28
-
-
0037313407
-
SMO algorithm for least-squares SVM formulations
-
DOI 10.1162/089976603762553013
-
S. Keerthi and S. Shevade. Smo algorithm for least squares svm formulations. Neural Computation, 15(2):487-507, 2003. (Pubitemid 37049831)
-
(2003)
Neural Computation
, vol.15
, Issue.2
, pp. 487-507
-
-
Keerthi, S.S.1
Shevade, S.K.2
-
32
-
-
79955848223
-
Lp norm multiple kernel learning
-
M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. Lp norm multiple kernel learning. Journal of Machine Learning Research, 12:953-997, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 953-997
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Zien, A.4
-
33
-
-
1942515510
-
Learning teh kernel matrix with semi-definite programming
-
G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. Jordan. Learning teh kernel matrix with semi-definite programming. In International Conference on Machine Learning, 2002.
-
(2002)
International Conference on Machine Learning
-
-
Lanckriet, G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.5
-
34
-
-
8844278523
-
Learning the kernel matrix with semidefinite programming
-
G. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. Jordan. Learning the kernel matrix with semidefinite programming. Journal of Machine Learning Research, 5:27-72, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Bartlett, P.3
Ghaoui, L.E.4
Jordan, M.5
-
36
-
-
33646887390
-
On the limited memory BFGS method for large scale optimization
-
D. Liu and J. Nocedal. On the limited memory method for large scale optimization. Mathematical Programming B, 45(3):503-528, 1989. (Pubitemid 20660315)
-
(1989)
Mathematical Programming, Series B
, vol.45
, Issue.3
, pp. 503-528
-
-
Liu Dong, C.1
Nocedal Jorge2
-
37
-
-
79751524883
-
First and second order smo algorithms for ls-svm classifiers
-
J. Lopez and J. Suykens. First and second order smo algorithms for ls-svm classifiers. Neural Processing Letters, 33(1):31-44, 2011.
-
(2011)
Neural Processing Letters
, vol.33
, Issue.1
, pp. 31-44
-
-
Lopez, J.1
Suykens, J.2
-
38
-
-
3042535216
-
Distincetive image features from scale-invariant keypoints
-
D. Lowe. Distincetive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2):91-110, 2004.
-
(2004)
International Journal of Computer Vision
, vol.60
, Issue.2
, pp. 91-110
-
-
Lowe, D.1
-
39
-
-
1542337814
-
-
PhD Thesis University of Technology, Berlin, Germany
-
S. Mika. Kernel fisher discriminants. PhD Thesis, University of Technology, Berlin, Germany, 2002.
-
(2002)
Kernel Fisher Discriminants
-
-
Mika, S.1
-
40
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
S. Mika, G. Rätsch, J. Weston, B. Schölkopf, and K. Müller. Fisher discriminant analysis with kernels. In IEEE Signal Processing Society Workshop: Neural Networks for Signal Processing, 1999.
-
(1999)
IEEE Signal Processing Society Workshop: Neural Networks for Signal Processing
-
-
Mika, S.1
Rätsch, G.2
Weston, J.3
Schölkopf, B.4
Müller, K.5
-
43
-
-
77954250136
-
Multiple kernel learning for object classification
-
S. Nakajima, A. Binder, C. Muller, W. Wojcikiewicz, M. Kloft, U. Brefeld, K. Müller, and M. Kawanabe. Multiple kernel learning for object classification. Technical Report on Information-Based Induction Sciences, 2009.
-
(2009)
Technical Report on Information-Based Induction Sciences
-
-
Nakajima, S.1
Binder, A.2
Muller, C.3
Wojcikiewicz, W.4
Kloft, M.5
Brefeld, U.6
Müller, K.7
Kawanabe, M.8
-
45
-
-
78049485759
-
An automated combination of kernels for predicting protein subcellular localization
-
C. Ong and A. Zien. An automated combination of kernels for predicting protein subcellular localization. In Workshop on Algorithms in Bioinformatics, 2008.
-
(2008)
Workshop on Algorithms in Bioinformatics
-
-
Ong, C.1
Zien, A.2
-
49
-
-
84859461767
-
-
T. Poggio, S. Mukherjee, R. Rifkin, A. Rakhlin, and A. Verri. B. In Conference on Uncertainty in Geometric Computations, 2004.
-
(2004)
Conference on Uncertainty in Geometric Computations
-
-
Poggio, T.1
Mukherjee, S.2
Rifkin, R.3
Rakhlin, A.4
Verri, A.5
-
50
-
-
57249084590
-
Simplemkl
-
A. Rakotomamonjy, F. Bach, Y. Grandvalet, and S. Canu. Simplemkl. Journal of Machine Learning Research, 9:2491-2521, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 2491-2521
-
-
Rakotomamonjy, A.1
Bach, F.2
Grandvalet, Y.3
Canu, S.4
-
53
-
-
0002536264
-
Playing billiard in version space
-
P. Rujan. Playing billiard in version space. Neural Computation, 9:99-122, 1997.
-
(1997)
Neural Computation
, vol.9
, pp. 99-122
-
-
Rujan, P.1
-
59
-
-
34547172608
-
The challenge problem for automated detection of 101 semantic concepts in multimedia
-
C. Snoek, M. Worring, J. Gemert, J. Geusebroek, and A. Smeulders. The challenge problem for automated detection of 101 semantic concepts in multimedia. In ACM Multimedia Conference, 2006.
-
(2006)
ACM Multimedia Conference
-
-
Snoek, C.1
Worring, M.2
Gemert, J.3
Geusebroek, J.4
Smeulders, A.5
-
60
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. Rätsch, C. Schafer, and B. Schölkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7:1531-1565, 2006. (Pubitemid 44373694)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
Scholkopf, B.4
-
61
-
-
77954666305
-
The shogun machine learning toolbox
-
S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien adn F. Bona, A. Binder, C. Gehl, and V. Franc. The shogun machine learning toolbox. Journal of Machine Learning Research, 11: 1799-1802, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 1799-1802
-
-
Sonnenburg, S.1
Rätsch, G.2
Henschel, S.3
Widmer, C.4
Behr, J.5
Zienadn, A.6
Bona, F.7
Binder, A.8
Gehl, C.9
Franc, V.10
-
62
-
-
0032638628
-
Least squares support vector machine classifiers
-
J. Suykens and J. Vandewalle. Least squares support vector machine classifiers. Neural Processing Letters, 9:293-300, 1999.
-
(1999)
Neural Processing Letters
, vol.9
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
64
-
-
84859449691
-
Visual category recognition using spectral regression and kernel discriminant analysis
-
A. Tahir, J. Kittler, K. Mikolajczyk, F. Yan, K. Sande, and T. Gevers. Visual category recognition using spectral regression and kernel discriminant analysis. In International Workshop on Subspace Methods, 2009.
-
(2009)
International Workshop on Subspace Methods
-
-
Tahir, A.1
Kittler, J.2
Mikolajczyk, K.3
Yan, F.4
Sande, K.5
Gevers, T.6
-
70
-
-
77955989568
-
Lp norm multiple kernel fisher discriminant analysis for object and image categorisation
-
F. Yan, K. Mikolajczyk, M. Barnard, H. Cai, and J. Kittler. Lp norm multiple kernel fisher discriminant analysis for object and image categorisation. In International Conference on Computer Vision and Pattern Recognition, 2010.
-
(2010)
International Conference on Computer Vision and Pattern Recognition
-
-
Yan, F.1
Mikolajczyk, K.2
Barnard, M.3
Cai, H.4
Kittler, J.5
-
71
-
-
44649123652
-
Multi-class discriminant kernel learning via convex programming
-
J. Ye, S. Ji, and J. Chen. Multi-class discriminant kernel learning via convex programming. Journal of Machine Learning Research, 9:719-758, 2008.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 719-758
-
-
Ye, J.1
Ji, S.2
Chen, J.3
-
72
-
-
33846580425
-
Local features and kernels for classification of texture and object categories: A comprehensive study
-
DOI 10.1007/s11263-006-9794-4
-
J. Zhang, M. Marszalek, S. Lazebnik, and C. Schmid. Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision, 73(2):213-238, 2007. (Pubitemid 46181625)
-
(2007)
International Journal of Computer Vision
, vol.73
, Issue.2
, pp. 213-238
-
-
Zhang, J.1
Marszalek, M.2
Lazebnik, S.3
Schmid, C.4
|