메뉴 건너뛰기




Volumn 33, Issue 1, 2011, Pages 31-44

First and second order SMO algorithms for LS-SVM classifiers

Author keywords

Least squares support vector machines; Sequential minimal optimization; Support vector classification; Working set selection

Indexed keywords

ASYMPTOTIC CONVERGENCE; CONJUGATE GRADIENT ALGORITHMS; FIRST ORDER; HYPERPARAMETERS; LEAST SQUARES SUPPORT VECTOR MACHINES; RATE OF CONVERGENCE; RBF KERNELS; SECOND ORDERS; SELECTION SCHEME; SEQUENTIAL MINIMAL OPTIMIZATION; SMO ALGORITHMS; SUPPORT VECTOR CLASSIFICATION; SVM CLASSIFIERS; WORKING SET SELECTION;

EID: 79751524883     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-010-9162-9     Document Type: Article
Times cited : (27)

References (21)
  • 1
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • 10.1023/A:1018628609742 1721843
    • JAK Suykens J Vandewalle 1999 Least squares support vector machine classifiers Neural Process Lett 9 3 293 300 10.1023/A:1018628609742 1721843
    • (1999) Neural Process Lett , vol.9 , Issue.3 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 2
    • 34249753618 scopus 로고
    • Support-vector networks
    • 0831.68098
    • C Cortes V Vapnik 1995 Support-vector networks Mach Learn 20 3 273 297 0831.68098
    • (1995) Mach Learn , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 3
    • 0033640690 scopus 로고    scopus 로고
    • Fast iterative nearest point algorithm for support vector machine classifier design
    • DOI 10.1109/72.822516
    • SS Keerthi SK Shevade C Bhattacharyya KRK Murthy 2000 A fast iterative nearest point algorithm for support vector machine classifier design IEEE Trans Neural Netw 11 1 124 136 10.1109/72.822516 (Pubitemid 32132894)
    • (2000) IEEE Transactions on Neural Networks , vol.11 , Issue.1 , pp. 124-136
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 5
    • 0037313407 scopus 로고    scopus 로고
    • SMO algorithm for least-squares SVM formulations
    • DOI 10.1162/089976603762553013
    • SS Keerthi SK Shevade 2003 SMO algorithm for least-squares SVM formulations Neural Comput 15 2 487 507 1047.68100 10.1162/089976603762553013 (Pubitemid 37049831)
    • (2003) Neural Computation , vol.15 , Issue.2 , pp. 487-507
    • Keerthi, S.S.1    Shevade, S.K.2
  • 10
    • 29144499905 scopus 로고    scopus 로고
    • Working set selection using second order information for training support vector machines
    • R-E Fan P-H Chen C-J Lin 2005 Working set selection using second order information for training support vector machines J Mach Learn Res 6 1889 1918 2249875 (Pubitemid 41798130)
    • (2005) Journal of Machine Learning Research , vol.6 , pp. 1889-1918
    • Fan, R.-E.1    Chen, P.-H.2    Lin, C.-J.3
  • 13
    • 0002714543 scopus 로고    scopus 로고
    • Making large-scale support vector machine learning practical
    • MIT Press, Cambridge
    • Joachims T (1999) Making large-scale support vector machine learning practical. In: Advances in kernel methods: support vector learning. MIT Press, Cambridge, pp 169-184
    • (1999) Advances in Kernel Methods: Support Vector Learning , pp. 169-184
    • Joachims, T.1
  • 14
    • 0000545946 scopus 로고    scopus 로고
    • Improvements to Platt's SMO algorithm for SVM classifier design
    • DOI 10.1162/089976601300014493
    • SS Keerthi SK Shevade C Bhattacharyya KRK Murthy 2001 Improvements to Platt's SMO algorithm for SVM classifier design Neural Comput 13 3 637 649 1085.68629 10.1162/089976601300014493 (Pubitemid 33595014)
    • (2001) Neural Computation , vol.13 , Issue.3 , pp. 637-649
    • Keerthi, S.S.1    Shevade, S.K.2    Bhattacharyya, C.3    Murthy, K.R.K.4
  • 16
    • 0038178786 scopus 로고    scopus 로고
    • Linear convergence of a decomposition method for support vector machines
    • Lin C-J (2001) Linear convergence of a decomposition method for support vector machines. Technical report
    • (2001) Technical Report
    • Lin, C.-J.1
  • 17
    • 33746932071 scopus 로고    scopus 로고
    • A study on SMO-type decomposition methods for support vector machines
    • DOI 10.1109/TNN.2006.875973
    • P-H Chen R-E Fan C-J Lin 2006 A study on SMO-type decomposition methods for support vector machines IEEE Trans Neural Netw 17 893 908 10.1109/TNN.2006.875973 (Pubitemid 44194150)
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.4 , pp. 893-908
    • Chen, P.-H.1    Fan, R.-E.2    Lin, C.-J.3
  • 20
    • 56549111881 scopus 로고    scopus 로고
    • A novel LS-SVMs hyper-parameter selection based on particle swarm optimization
    • 10.1016/j.neucom.2008.04.027
    • XC Guo JH Yang CG Wu CY Wang YC Liang 2008 A novel LS-SVMs hyper-parameter selection based on particle swarm optimization Neurocomputing 71 16-18 3211 3215 10.1016/j.neucom.2008.04.027
    • (2008) Neurocomputing , vol.71 , Issue.1618 , pp. 3211-3215
    • Guo, X.C.1    Yang, J.H.2    Wu, C.G.3    Wang, C.Y.4    Liang, Y.C.5
  • 21
    • 61849155785 scopus 로고    scopus 로고
    • Cycle-breaking acceleration of SVM training
    • 10.1016/j.neucom.2008.12.014
    • Á Barbero J López JR Dorronsoro 2009 Cycle-breaking acceleration of SVM training Neurocomputing 72 7-9 1398 1406 10.1016/j.neucom.2008.12.014
    • (2009) Neurocomputing , vol.72 , Issue.79 , pp. 1398-1406
    • Barbero, Á.1    López, J.2    Dorronsoro, J.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.