-
6
-
-
0043170469
-
-
(Internal Rep. 01-110). Leuven, Belgium: ESAT-SISTA, K. U. Leuven
-
Hamers, B., Suykens, J., & De Moor, B. (2001). A comparison of iterative methods for least squares support vector machine classifiers (Internal Rep. 01-110). Leuven, Belgium: ESAT-SISTA, K. U. Leuven.
-
(2001)
A Comparison of Iterative Methods for Least Squares Support Vector Machine Classifiers
-
-
Hamers, B.1
Suykens, J.2
De Moor, B.3
-
7
-
-
0000545946
-
Improvements to Platt's SMO algorithm for SVM design
-
Keerthi, S. S., Shevade, S. K., Bhattacharyya, C., & Murthy, K. R. K. (2001). Improvements to Platt's SMO algorithm for SVM design. Neural Computation, 13, 637-649.
-
(2001)
Neural Computation
, vol.13
, pp. 637-649
-
-
Keerthi, S.S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
8
-
-
84898965347
-
A mathematical programming approach to the kernel Fisher algorithm
-
T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.). Cambridge, MA: MIT Press
-
Mika, S., Ratsch, G., & Müller, K. R. (2001). A mathematical programming approach to the kernel Fisher algorithm. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13 (pp. 591-597). Cambridge, MA: MIT Press.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
, pp. 591-597
-
-
Mika, S.1
Ratsch, G.2
Müller, K.R.3
-
9
-
-
0033337021
-
Fisher discriminant analysis with kernels
-
Y. H. Hu, J. Larsen, E. Wilson, & S. Douglas (Eds.). New York: IEEE
-
Mika, S., Ratsch, G., Weston, J., Schölkopf, B., & Müller, K. R. (1999). Fisher discriminant analysis with kernels. In Y. H. Hu, J. Larsen, E. Wilson, & S. Douglas (Eds.), Neural networks for signal processing IX (pp. 41-48). New York: IEEE.
-
(1999)
Neural Networks for Signal Processing IX
, pp. 41-48
-
-
Mika, S.1
Ratsch, G.2
Weston, J.3
Schölkopf, B.4
Müller, K.R.5
-
11
-
-
0003243224
-
Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods
-
A. Smola, B. Schölkopf, & D. Schuurmans (Eds.), Cambridge, MA: MIT Press
-
Platt, J. (1999). Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In A. Smola, B. Schölkopf, & D. Schuurmans (Eds.), Advances in large margin classifiers. Cambridge, MA: MIT Press.
-
(1999)
Advances in Large Margin Classifiers
-
-
Platt, J.1
-
12
-
-
4243678636
-
-
[Benchmark repository.]
-
Rätsch, G. (1999). [Benchmark repository.] Available on-line at: http://ida.first.gmd.de/̃raetsch/data/benchmarks.htm.
-
(1999)
-
-
Rätsch, G.1
-
13
-
-
0002619965
-
Ridge regression learning algorithm in dual variables
-
Madison, WI
-
Saunders, C., Gammerman, A., & Vovk, V. (1998). Ridge regression learning algorithm in dual variables. In Proceedings of the Fifteenth International Conference on Machine Learning (ICML-98). Madison, WI.
-
(1998)
Proceedings of the Fifteenth International Conference on Machine Learning (ICML-98)
-
-
Saunders, C.1
Gammerman, A.2
Vovk, V.3
-
14
-
-
0003401675
-
-
(Neuro-Colt2 Tech. Rep. NC2-TR-1998-030). Berlin: ESPRIT Working Group in Neural and Computational Learning II
-
Smola, A., & Schölkopf, B. (1998) A tutorial on support vector regression (Neuro-Colt2 Tech. Rep. NC2-TR-1998-030). Berlin: ESPRIT Working Group in Neural and Computational Learning II.
-
(1998)
A Tutorial on Support Vector Regression
-
-
Smola, A.1
Schölkopf, B.2
-
15
-
-
0001874815
-
Least squares support vector machine classifiers: A large scale algorithm
-
Stresa, Italy
-
Suykens, J., Lukas, L., Van Dooren, P., De Moor, B., & Vandewalle, J. (1999). Least squares support vector machine classifiers: A large scale algorithm. In Proceedings of the European Conference on Circuit Theory and Design (ECCTD'99) (pp. 839-842). Stresa, Italy.
-
(1999)
Proceedings of the European Conference on Circuit Theory and Design (ECCTD'99)
, pp. 839-842
-
-
Suykens, J.1
Lukas, L.2
Van Dooren, P.3
De Moor, B.4
Vandewalle, J.5
-
16
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens, J., & Vandewalle, J. (1999). Least squares support vector machine classifiers. Neural Processing Letters, 9, 293-300.
-
(1999)
Neural Processing Letters
, vol.9
, pp. 293-300
-
-
Suykens, J.1
Vandewalle, J.2
-
17
-
-
0003551703
-
-
(Tech. Rep. SOR-94-15). Princeton, NJ: Statistics and Operations Research, Princeton University
-
Vanderbei, R. J. (1994). LOQO: An interior point code for quadratic programming (Tech. Rep. SOR-94-15). Princeton, NJ: Statistics and Operations Research, Princeton University.
-
(1994)
LOQO: An Interior Point Code for Quadratic Programming
-
-
Vanderbei, R.J.1
-
18
-
-
0004229035
-
-
(Internal Rep. 00-37). Leuven, Belgium: ESAT-SISTA, K. U. Leuven
-
Van Gestel, T., Suykens, J., Baesens, B., Viaene, S., Vanthienen, J., Dedene, G., De Moor, B., & Vandewalle, J. (2000). Benchmarking least squares support vector machine classifiers (Internal Rep. 00-37). Leuven, Belgium: ESAT-SISTA, K. U. Leuven.
-
(2000)
Benchmarking Least Squares Support Vector Machine Classifiers
-
-
Van Gestel, T.1
Suykens, J.2
Baesens, B.3
Viaene, S.4
Vanthienen, J.5
Dedene, G.6
De Moor, B.7
Vandewalle, J.8
-
19
-
-
0036582564
-
A Bayesian framework for least squares support vector machine classifiers
-
Van Gestel, T., Suykens, J., Lanckriet, G., Lambrechts, A., De Moor, B., & Vandewalle, J. (2002). A Bayesian framework for least squares support vector machine classifiers. Neural Computation, 14, 1115-1147.
-
(2002)
Neural Computation
, vol.14
, pp. 1115-1147
-
-
Van Gestel, T.1
Suykens, J.2
Lanckriet, G.3
Lambrechts, A.4
De Moor, B.5
Vandewalle, J.6
|