-
3
-
-
31044438334
-
Multi-time scale stream flow prediction: The support vector machines approach
-
ASEFA T., KEMBLOWSKI M. W., MCKEE M., and KHALIL A., 2006: Multi-time scale stream flow prediction: The support vector machines approach. J. Hydrol., 318, 7-16.
-
(2006)
J. Hydrol.
, vol.318
, pp. 7-16
-
-
Asefa, T.1
Kemblowski, M.W.2
Mckee, M.3
Khalil, A.4
-
4
-
-
0345991844
-
A new method for establishing and saving fuzzy membership functions
-
4-6 June, Toyama, Japan
-
BAGHERI SHOURAKI S. and HONDA N., 1997: A new method for establishing and saving fuzzy membership functions. Proc., Int. 13th Fuzzy Symposium, 4-6 June, Toyama, Japan, pp. 91-93.
-
(1997)
Proc., Int. 13th Fuzzy Symposium
, pp. 91-93
-
-
Bagheri Shouraki, S.1
Honda, N.2
-
6
-
-
0028468293
-
Using mutual information for selecting features in supervised neural net learning
-
BATTITI R., 1994: Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5, 4, 537-550.
-
(1994)
IEEE Transactions on Neural Networks
, vol.5
, Issue.4
, pp. 537-550
-
-
Battiti, R.1
-
7
-
-
60249084777
-
Generalization performance of support vector machines and neural networks in runoff modeling
-
BEHZAD M., ASGHARI K., EAZI M., PALHANG M., 2009: Generalization performance of support vector machines and neural networks in runoff modeling, Expert Systems with Applications, 36, 7624-7629.
-
(2009)
Expert Systems with Applications
, vol.36
, pp. 7624-7629
-
-
Behzad, M.1
Asghari, K.2
Eazi, M.3
Palhang, M.4
-
8
-
-
0036221122
-
Optimal division of data for neural network models in water resources applications
-
1010, doi: 10.1029/2001WR000266
-
BOWDEN G. J., MAIER H. R., and DANDY G. C., 2002: Optimal division of data for neural network models in water resources applications. Water Resour. Res., 38, 2, 1010, doi: 10.1029/2001WR000266. (http://www.agu.org/pubs/crossref/ 2002/2001WR000266.shtml)
-
(2002)
Water Resour. Res.
, vol.38
, Issue.2
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
-
9
-
-
10644295753
-
Input determination for neural network models in water resources applications, Part 1-background and methodology
-
BOWDEN G. J. DANDY G. C. & MAIER, H. R., 2005a: Input determination for neural network models in water resources applications, Part 1-background and methodology. J. Hydrol., 301, 75-92.
-
(2005)
J. Hydrol.
, vol.301
, pp. 75-92
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
10
-
-
10644225424
-
Input determination for neural network models in water resources applications, Part 2. Case study: Forecasting salinity in a river
-
BOWDEN, G. J. DANDY G. C. & MAIER, H. R. (2005b): Input determination for neural network models in water resources applications, Part 2. Case study: Forecasting salinity in a river. J. Hydrol., 301, 93-107.
-
(2005)
J. Hydrol.
, vol.301
, pp. 93-107
-
-
Bowden, G.J.1
Dandy, G.C.2
Maier, H.R.3
-
11
-
-
0026966646
-
-
In D. Haussler, editor, 5th Annual ACM Workshop on COLT, Pittsburgh, PA, ACM Press
-
BOSER B. E., GUYON I. M., VAPNIK V. N., 1992: A training algorithm for optimal margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT, 144-152, Pittsburgh, PA, ACM Press.
-
(1992)
A Training Algorithm for Optimal Margin Classifiers
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
12
-
-
85052496770
-
-
Wadworth, Belmont, California
-
CHAMBERS J. M., CLEVELAND W. S., KLEINER B., TUKEY P. A., 1983: Graphical methods for data analysis. Wadworth, Belmont, California, pp. 395.
-
(1983)
Graphical Methods for Data Analysis
, pp. 395
-
-
Chambers, J.M.1
Cleveland, W.S.2
Kleiner, B.3
Tukey, P.A.4
-
13
-
-
79955702502
-
LIBSVM: A library for support vector machines
-
Software available at
-
CHANG C. C and LIN C. J., 2011: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
-
(2011)
ACM Transactions on Intelligent Systems and Technology
, vol.2
, pp. 271-2727
-
-
Chang, C.C.1
Lin, C.J.2
-
14
-
-
28444489651
-
Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
-
CHANG F. J. and CHANG Y. T., 2006: Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Res, 29, 1-10.
-
(2006)
Adv. Water Res
, vol.29
, pp. 1-10
-
-
Chang, F.J.1
Chang, Y.T.2
-
15
-
-
0035340711
-
Counter propagation fuzzy-neural network modeling approach to real time streamflow prediction
-
CHANG F. J. and CHEN Y. C., 2001: Counter propagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol., 245, 153-163.
-
(2001)
J. Hydrol.
, vol.245
, pp. 153-163
-
-
Chang, F.J.1
Chen, Y.C.2
-
16
-
-
27544472438
-
Comparison of several flood forecasting models in Yangtze River
-
CHAU K. W., WU C. L. and LI Y. S., 2005: Comparison of several flood forecasting models in Yangtze River. J. Hydrologic Engng., ASCE, 10, 6, 485-491.
-
(2005)
J. Hydrologic Engng., ASCE
, vol.10
, Issue.6
, pp. 485-491
-
-
Chau, K.W.1
Wu, C.L.2
Li, Y.S.3
-
17
-
-
33646075449
-
The strategy of building a flood forecast model by neuro-fuzzy network
-
CHEN S. H., LIN Y. H., CHANG L. C., and CHANG F. J., 2006: The strategy of building a flood forecast model by neuro-fuzzy network. Hydrol. Process., 20, 1525-1540.
-
(2006)
Hydrol. Process.
, vol.20
, pp. 1525-1540
-
-
Chen, S.H.1
Lin, Y.H.2
Chang, L.C.3
Chang, F.J.4
-
18
-
-
0036845179
-
Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration
-
CHENG C. T., OU C. P. and CHAU K. W., 2002: Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration. J. Hydrol., 268, 72-86.
-
(2002)
J. Hydrol.
, vol.268
, pp. 72-86
-
-
Cheng, C.T.1
Ou, C.P.2
Chau, K.W.3
-
19
-
-
0035398081
-
Model Induction with support vector machines: Introduction and Application
-
DIBIKE Y. B., VELICKOV S., SOLOMATINE D., and ABBOTT M. B., 2001: Model Induction with support vector machines: Introduction and Application. J. Computing in Civil Engng., 15, 3, 208-216.
-
(2001)
J. Computing in Civil Engng.
, vol.15
, Issue.3
, pp. 208-216
-
-
Dibike, Y.B.1
Velickov, S.2
Solomatine, D.3
Abbott, M.B.4
-
22
-
-
61749084755
-
Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach
-
FERNANDO T. M. K. G., MAIER H. R., DANDY G. C., 2009: Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach. J. Hydrol., 367, 3-4, 165-176.
-
(2009)
J. Hydrol.
, vol.367
, Issue.3-4
, pp. 165-176
-
-
Fernando, T.M.K.G.1
Maier, H.R.2
Dandy, G.C.3
-
23
-
-
34249943593
-
River flow estimation using adaptive neuro fuzzy inference system
-
FIRAT M., and GUNGOR M., 2006: River flow estimation using adaptive neuro fuzzy inference system. Math. Compute. Simulate., 75, 3-4, 87-96.
-
(2006)
Math. Compute. Simulate.
, vol.75
, Issue.3-4
, pp. 87-96
-
-
Firat, M.1
Gungor, M.2
-
24
-
-
38849167375
-
Comparison of artificial intelligence techniques for river flow forecasting
-
FIRAT M., 2008: Comparison of artificial intelligence techniques for river flow forecasting. Hydrol. Earth Syst. Sci., 12, 123-139.
-
(2008)
Hydrol. Earth Syst. Sci.
, vol.12
, pp. 123-139
-
-
Firat, M.1
-
25
-
-
0029413797
-
Artificial neural network modeling of rainfall-runoff process
-
HSU K., GUPTA H. V., and SOROOSHIAN S., 1995: Artificial neural network modeling of rainfall-runoff process. Water Resour. Res., 31, 2517-2530.
-
(1995)
Water Resour. Res.
, vol.31
, pp. 2517-2530
-
-
Hsu, K.1
Gupta, H.V.2
Sorooshian, S.3
-
26
-
-
0033197895
-
Application of ANN for reservoir inflow prediction and operation
-
JAIN S. K., DAS D., and SRIVASTAVA D. K., 1999: Application of ANN for reservoir inflow prediction and operation. J. Water Resources Planning and Management, ASCE, 125, 263-271.
-
(1999)
J. Water Resources Planning and Management, ASCE
, vol.125
, pp. 263-271
-
-
Jain, S.K.1
Das, D.2
Srivastava, D.K.3
-
27
-
-
12544259920
-
Daily river flow forecasting using artificial neural networks and auto-regressive models
-
KISI O., 2005: Daily river flow forecasting using artificial neural networks and auto-regressive models. Turkish J. Eng. Env. Sci., 29, 9-20.
-
(2005)
Turkish J. Eng. Env. Sci.
, vol.29
, pp. 9-20
-
-
Kisi, O.1
-
28
-
-
33746830757
-
Using support vector machines for long-term discharge prediction
-
LIN J. Y., CHENG C. T. and CHAU K. W., 2006: Using support vector machines for long-term discharge prediction. Hydrological Sciences J., 51, 4, 599-612.
-
(2006)
Hydrological Sciences J.
, vol.51
, Issue.4
, pp. 599-612
-
-
Lin, J.Y.1
Cheng, C.T.2
Chau, K.W.3
-
29
-
-
0034723860
-
Advance flood forecasting for flood stricken Bangladesh with a fuzzy reasoning method
-
LIONG S. Y., LIM W. H., KOJIRI T., and HORI H., 2006: Advance flood forecasting for flood stricken Bangladesh with a fuzzy reasoning method. Hydrol. Process, 14, 431-448.
-
(2006)
Hydrol. Process
, vol.14
, pp. 431-448
-
-
Liong, S.Y.1
Lim, W.H.2
Kojiri, T.3
Hori, H.4
-
30
-
-
62349118015
-
Feature selection with dynamic mutual information
-
LIU H., SUN J., LIU L. and ZHANG H., 2009: Feature selection with dynamic mutual information. Pattern Recognition, 42, 7, 1330-1339.
-
(2009)
Pattern Recognition
, vol.42
, Issue.7
, pp. 1330-1339
-
-
Liu, H.1
Sun, J.2
Liu, L.3
Zhang, H.4
-
31
-
-
0346687459
-
Application of fuzzy logic to the seasonal runoff
-
MAHABIR C., HICKS F. E., and FAYEK A. R., 2000: Application of fuzzy logic to the seasonal runoff. Hydrol. Process, 17, 3749-3762.
-
(2000)
Hydrol. Process
, vol.17
, pp. 3749-3762
-
-
Mahabir, C.1
Hicks, F.E.2
Fayek, A.R.3
-
32
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
-
MAIER H.R. AND DANDY G. C., 1998: Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications. Environmental Modeling and Software, 15, 101-123.
-
(1998)
Environmental Modeling and Software
, vol.15
, pp. 101-123
-
-
Maier, H.R.1
Dandy, G.C.2
-
33
-
-
84963342677
-
Advances in the linguistic synthesis of fuzzy controllers
-
MAMDANI E. A., 1976: Advances in the linguistic synthesis of fuzzy controllers. Int. J. Man-Machine Studies, 8, 669-678.
-
(1976)
Int. J. Man-Machine Studies
, vol.8
, pp. 669-678
-
-
Mamdani, E.A.1
-
34
-
-
0016451032
-
An experiment in linguistic synthesis with a fuzzy logic controller
-
MAMDANI E. A. and ASSILIAN S., 1975: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Studies, 7, 1-3.
-
(1975)
Int. J. Man-Machine Studies
, vol.7
, pp. 1-3
-
-
Mamdani, E.A.1
Assilian, S.2
-
36
-
-
0003696207
-
-
PhD thesis, Department of Civil Engineering. Colorado State University. Fort Collins. Colorado
-
MARKUS M., 1997: Application of neural networks in streamflow forecasting. PhD thesis, Department of Civil Engineering. Colorado State University. Fort Collins. Colorado.
-
(1997)
Application of neural networks in streamflow forecasting.
-
-
Markus, M.1
-
37
-
-
44749087176
-
Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems
-
MAY R. J., DANDY G. C., MAIER H. R., and NIXON J. B., 2008a: Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environmental Modeling and Software, 23, 1289-1299.
-
(2008)
Environmental Modeling and Software
, vol.23
, pp. 1289-1299
-
-
May, R.J.1
Dandy, G.C.2
Maier, H.R.3
Nixon, J.B.4
-
38
-
-
44749087316
-
Non-linear variable selection for artificial neural networks using partial mutual information
-
MAY R. J., MAIER H. R., DANDY G. C., and FERNANDO T. G., 2008b: Non-linear variable selection for artificial neural networks using partial mutual information. Environmental Modeling and Software, 23, 1312-1326.
-
(2008)
Environmental Modeling and Software
, vol.23
, pp. 1312-1326
-
-
May, R.J.1
Maier, H.R.2
Dandy, G.C.3
Fernando, T.G.4
-
39
-
-
34249938798
-
Fuzzy computing based rainfall-runoff model for real time flood forecasting
-
NAYAK P. C., SUDHEER K. P. and RAMASASTRI K. S., 2004a: Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrol. Process, 17, 3749-3762.
-
(2004)
Hydrol. Process
, vol.17
, pp. 3749-3762
-
-
Nayak, P.C.1
Sudheer, K.P.2
Ramasastri, K.S.3
-
40
-
-
33845620661
-
Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds
-
PULIDO-CALVO I. and PORTELA, M. M., 2007: Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J. Hydrol., 332, 1-15.
-
(2007)
J. Hydrol.
, vol.332
, pp. 1-15
-
-
Pulido-Calvo, I.1
Portela, M.M.2
-
41
-
-
0029663691
-
Fuzzy learning decomposition for the scheduling of hydroelectric power systems
-
SAAD M., BIGRAS P., TURGEON A., and DUQUETTE R., 1996: Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour. Res., 32, 179-186.
-
(1996)
Water Resour. Res.
, vol.32
, pp. 179-186
-
-
Saad, M.1
Bigras, P.2
Turgeon, A.3
Duquette, R.4
-
42
-
-
33745101017
-
A comparative fuzzy logic approach to runoff coefficient and runoff estimation
-
SEN Z. and ALTUNKAYNAK A., 2006: A comparative fuzzy logic approach to runoff coefficient and runoff estimation. Hydrol. Process, 20, 1993-2009.
-
(2006)
Hydrol. Process
, vol.20
, pp. 1993-2009
-
-
Sen, Z.1
Altunkaynak, A.2
-
43
-
-
0342506462
-
Application of a neural network technique to rainfall-runoff modeling
-
SHAMSELDIN A. Y., 1997: Application of a neural network technique to rainfall-runoff modeling. J. Hydrol., 199, 272-293.
-
(1997)
J. Hydrol.
, vol.199
, pp. 272-293
-
-
Shamseldin, A.Y.1
-
44
-
-
0037199712
-
River flow forecasting: Use of phase space reconstruction and artificial neural networks approaches
-
SIVAKUMAR B., JAYAWARDENA A. W. and FERNANDO T. M. K. G., 2002: River flow forecasting: Use of phase space reconstruction and artificial neural networks approaches. J. Hydrol., 265, 225-245.
-
(2002)
J. Hydrol.
, vol.265
, pp. 225-245
-
-
Sivakumar, B.1
Jayawardena, A.W.2
Fernando, T.M.K.G.3
-
47
-
-
0027503733
-
-
SOROOSHIAN S., DAUN Q., and GUPTA V. K., 1993: Calibration of Rainfall-Runoff Models; Application of Global Optimization to the Sacramento Soil Moisture Accounting Model. Water Resour. Res., 29, 1185-1193.
-
(1993)
Calibration of Rainfall-Runoff Models; Application of Global Optimization to the Sacramento Soil Moisture Accounting Model. Water Resour. Res.
, vol.29
, pp. 1185-1193
-
-
Sorooshian, S.1
Daun, Q.2
Gupta, V.K.3
-
50
-
-
67650666721
-
Application of the active learning method to the retrieval of pigment from spectral remote sensing reflectance data
-
TAHERI SHAHRAIYNI H., BAGHERI SHOURAKI S., FELL F., SCHAALE M., FISCHER J., TAVAKOLI A., PREUSKER R., TAJRISHY M., VATANDOUST M., and KHODAPARAST H., 2009: Application of the active learning method to the retrieval of pigment from spectral remote sensing reflectance data. Int. J Remote Sensing, 30, 1045-1065.
-
(2009)
Int. J Remote Sensing
, vol.30
, pp. 1045-1065
-
-
Taheri Shahraiyni, H.1
Bagheri Shouraki, S.2
Fell, F.3
Schaale, M.4
Fischer, J.5
Tavakoli, A.6
Preusker, R.7
Tajrishy, M.8
Vatandoust, M.9
Khodaparast, H.10
-
51
-
-
84858254687
-
Fuzzy modeling by active learning method
-
1st Edn., In-Tech Publisher
-
TAHERI SHAHRAIYNI H., 2010: Fuzzy modeling by active learning method. Advanced Technologies, 1st Edn., In-Tech Publisher.
-
(2010)
Advanced Technologies
-
-
Taheri Shahraiyni, H.1
-
54
-
-
0033167344
-
Rainfall-runoff modeling using artificial neural networks
-
TOKAR A. S. and JOHNSON P. A., 1999: Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng., ASCE, 4, 232-239.
-
(1999)
J. Hydrol. Eng., ASCE
, vol.4
, pp. 232-239
-
-
Tokar, A.S.1
Johnson, P.A.2
-
55
-
-
33751081243
-
ANN and Fuzzy logic models for simulating event-based rainfall-runoff
-
TAYFUR, G. and SINGH, V.P., 2006: ANN and Fuzzy Logic Models for Simulating Event-Based Rainfall-Runoff. J. Hydraul. Engng, 132, 12, 1321-1330.
-
(2006)
J. Hydraul. Engng
, vol.132
, Issue.12
, pp. 1321-1330
-
-
Tayfur, G.1
Singh, V.P.2
-
56
-
-
84858259728
-
-
US ARMY CORPS of ENGINEERS (USACE)
-
US ARMY CORPS of ENGINEERS (USACE)., 2000: HECHMS Technical Reference Manual. Davis, C.A, http://www.hec.usace.army.mil/.
-
(2000)
HECHMS Technical Reference Manual Davis, C.A
-
-
-
60
-
-
68349105875
-
A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
-
WANG W. C., CHAU K. W., CHENG C. T. and QIU L., 2009: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol., 374, 3-4, 294-306.
-
(2009)
J. Hydrol.
, vol.374
, Issue.3-4
, pp. 294-306
-
-
Wang, W.C.1
Chau, K.W.2
Cheng, C.T.3
Qiu, L.4
-
61
-
-
70349777454
-
Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques
-
doi:10.1029/2007WR006737
-
WU C.L., CHAU K. W. and LI Y. S., 2009: Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques. Water Resour. Res., 45, W08432, doi:10.1029/2007WR006737.
-
(2009)
Water Resour. Res.
, vol.45
-
-
Wu, C.L.1
Chau, K.W.2
Li, Y.S.3
-
62
-
-
0030162090
-
Calibration of conceptual rainfall-runoff models: Sensitivity to calibration data
-
YAPO P., GUPTA V. K., and SOROOSHIAN S., 1996: Calibration of Conceptual Rainfall-Runoff Models: Sensitivity to Calibration Data. J. Hydrol., 181, 23-48.
-
(1996)
J. Hydrol.
, vol.181
, pp. 23-48
-
-
Yapo, P.1
Gupta, V.K.2
Sorooshian, S.3
-
63
-
-
33746916489
-
Support vector regression for real-time flood stage forecasting
-
YU P.S., CHEN S.T., and CHANG I.F., 2006: Support vector regression for real-time flood stage forecasting. J. Hydrol., 328, 704-716.
-
(2006)
J. Hydrol.
, vol.328
, pp. 704-716
-
-
Yu, P.S.1
Chen, S.T.2
Chang, I.F.3
-
65
-
-
0033019602
-
Short-term streamflow forecasting using artificial neural networks
-
ZEALAND C. M., BURN D. H., and SIMONOVIC S. P., 1999: Short-term streamflow forecasting using artificial neural networks. J. Hydrol., 214, 32-48.
-
(1999)
J. Hydrol.
, vol.214
, pp. 32-48
-
-
Zealand, C.M.1
Burn, D.H.2
Simonovic, S.P.3
-
66
-
-
37249083060
-
Using adaptive neuro-fuzzy inference system for hydrological time series prediction
-
doi:10.1016/j.asoc.2007.07.011
-
ZOUNEMAT-KERMANI M., TESHNEHLAB M., 2007: Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl. Soft Comput. J., doi:10.1016/j.asoc.2007.07.011.
-
(2007)
Appl. Soft Comput.J.
-
-
Zounemat-Kermani, M.1
Teshnehlab, M.2
|