메뉴 건너뛰기




Volumn 60, Issue 1, 2012, Pages 16-32

Comparison between active learning method and support vector machine for runoff modeling

Author keywords

Active Learning Method (ALM); Fuzzy Modeling; Genetic Algorithm; Karoon River Basin; Runoff Modeling; Support Vector Machine (SVM)

Indexed keywords

ACTIVE LEARNING METHODS; FUZZY MODELING; KAROON RIVER; RUNOFF MODELING; SUPPORT VECTOR MACHINE (SVM);

EID: 84858250001     PISSN: 0042790X     EISSN: 13384333     Source Type: Journal    
DOI: 10.2478/v10098-012-0002-7     Document Type: Article
Times cited : (11)

References (66)
  • 3
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow prediction: The support vector machines approach
    • ASEFA T., KEMBLOWSKI M. W., MCKEE M., and KHALIL A., 2006: Multi-time scale stream flow prediction: The support vector machines approach. J. Hydrol., 318, 7-16.
    • (2006) J. Hydrol. , vol.318 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.W.2    Mckee, M.3    Khalil, A.4
  • 4
    • 0345991844 scopus 로고    scopus 로고
    • A new method for establishing and saving fuzzy membership functions
    • 4-6 June, Toyama, Japan
    • BAGHERI SHOURAKI S. and HONDA N., 1997: A new method for establishing and saving fuzzy membership functions. Proc., Int. 13th Fuzzy Symposium, 4-6 June, Toyama, Japan, pp. 91-93.
    • (1997) Proc., Int. 13th Fuzzy Symposium , pp. 91-93
    • Bagheri Shouraki, S.1    Honda, N.2
  • 6
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural net learning
    • BATTITI R., 1994: Using mutual information for selecting features in supervised neural net learning. IEEE Transactions on Neural Networks, 5, 4, 537-550.
    • (1994) IEEE Transactions on Neural Networks , vol.5 , Issue.4 , pp. 537-550
    • Battiti, R.1
  • 7
    • 60249084777 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and neural networks in runoff modeling
    • BEHZAD M., ASGHARI K., EAZI M., PALHANG M., 2009: Generalization performance of support vector machines and neural networks in runoff modeling, Expert Systems with Applications, 36, 7624-7629.
    • (2009) Expert Systems with Applications , vol.36 , pp. 7624-7629
    • Behzad, M.1    Asghari, K.2    Eazi, M.3    Palhang, M.4
  • 8
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • 1010, doi: 10.1029/2001WR000266
    • BOWDEN G. J., MAIER H. R., and DANDY G. C., 2002: Optimal division of data for neural network models in water resources applications. Water Resour. Res., 38, 2, 1010, doi: 10.1029/2001WR000266. (http://www.agu.org/pubs/crossref/ 2002/2001WR000266.shtml)
    • (2002) Water Resour. Res. , vol.38 , Issue.2
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 9
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications, Part 1-background and methodology
    • BOWDEN G. J. DANDY G. C. & MAIER, H. R., 2005a: Input determination for neural network models in water resources applications, Part 1-background and methodology. J. Hydrol., 301, 75-92.
    • (2005) J. Hydrol. , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 10
    • 10644225424 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications, Part 2. Case study: Forecasting salinity in a river
    • BOWDEN, G. J. DANDY G. C. & MAIER, H. R. (2005b): Input determination for neural network models in water resources applications, Part 2. Case study: Forecasting salinity in a river. J. Hydrol., 301, 93-107.
    • (2005) J. Hydrol. , vol.301 , pp. 93-107
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 13
    • 79955702502 scopus 로고    scopus 로고
    • LIBSVM: A library for support vector machines
    • Software available at
    • CHANG C. C and LIN C. J., 2011: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1-27:27. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
    • (2011) ACM Transactions on Intelligent Systems and Technology , vol.2 , pp. 271-2727
    • Chang, C.C.1    Lin, C.J.2
  • 14
    • 28444489651 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system for prediction of water level in reservoir
    • CHANG F. J. and CHANG Y. T., 2006: Adaptive neuro-fuzzy inference system for prediction of water level in reservoir. Adv. Water Res, 29, 1-10.
    • (2006) Adv. Water Res , vol.29 , pp. 1-10
    • Chang, F.J.1    Chang, Y.T.2
  • 15
    • 0035340711 scopus 로고    scopus 로고
    • Counter propagation fuzzy-neural network modeling approach to real time streamflow prediction
    • CHANG F. J. and CHEN Y. C., 2001: Counter propagation fuzzy-neural network modeling approach to real time streamflow prediction. J. Hydrol., 245, 153-163.
    • (2001) J. Hydrol. , vol.245 , pp. 153-163
    • Chang, F.J.1    Chen, Y.C.2
  • 16
    • 27544472438 scopus 로고    scopus 로고
    • Comparison of several flood forecasting models in Yangtze River
    • CHAU K. W., WU C. L. and LI Y. S., 2005: Comparison of several flood forecasting models in Yangtze River. J. Hydrologic Engng., ASCE, 10, 6, 485-491.
    • (2005) J. Hydrologic Engng., ASCE , vol.10 , Issue.6 , pp. 485-491
    • Chau, K.W.1    Wu, C.L.2    Li, Y.S.3
  • 17
    • 33646075449 scopus 로고    scopus 로고
    • The strategy of building a flood forecast model by neuro-fuzzy network
    • CHEN S. H., LIN Y. H., CHANG L. C., and CHANG F. J., 2006: The strategy of building a flood forecast model by neuro-fuzzy network. Hydrol. Process., 20, 1525-1540.
    • (2006) Hydrol. Process. , vol.20 , pp. 1525-1540
    • Chen, S.H.1    Lin, Y.H.2    Chang, L.C.3    Chang, F.J.4
  • 18
    • 0036845179 scopus 로고    scopus 로고
    • Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration
    • CHENG C. T., OU C. P. and CHAU K. W., 2002: Combining a fuzzy optimal model with a genetic algorithm to solve multiobjective rainfall-runoff model calibration. J. Hydrol., 268, 72-86.
    • (2002) J. Hydrol. , vol.268 , pp. 72-86
    • Cheng, C.T.1    Ou, C.P.2    Chau, K.W.3
  • 19
    • 0035398081 scopus 로고    scopus 로고
    • Model Induction with support vector machines: Introduction and Application
    • DIBIKE Y. B., VELICKOV S., SOLOMATINE D., and ABBOTT M. B., 2001: Model Induction with support vector machines: Introduction and Application. J. Computing in Civil Engng., 15, 3, 208-216.
    • (2001) J. Computing in Civil Engng. , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 22
    • 61749084755 scopus 로고    scopus 로고
    • Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach
    • FERNANDO T. M. K. G., MAIER H. R., DANDY G. C., 2009: Selection of input variables for data driven models: An average shifted histogram partial mutual information estimator approach. J. Hydrol., 367, 3-4, 165-176.
    • (2009) J. Hydrol. , vol.367 , Issue.3-4 , pp. 165-176
    • Fernando, T.M.K.G.1    Maier, H.R.2    Dandy, G.C.3
  • 23
    • 34249943593 scopus 로고    scopus 로고
    • River flow estimation using adaptive neuro fuzzy inference system
    • FIRAT M., and GUNGOR M., 2006: River flow estimation using adaptive neuro fuzzy inference system. Math. Compute. Simulate., 75, 3-4, 87-96.
    • (2006) Math. Compute. Simulate. , vol.75 , Issue.3-4 , pp. 87-96
    • Firat, M.1    Gungor, M.2
  • 24
    • 38849167375 scopus 로고    scopus 로고
    • Comparison of artificial intelligence techniques for river flow forecasting
    • FIRAT M., 2008: Comparison of artificial intelligence techniques for river flow forecasting. Hydrol. Earth Syst. Sci., 12, 123-139.
    • (2008) Hydrol. Earth Syst. Sci. , vol.12 , pp. 123-139
    • Firat, M.1
  • 25
    • 0029413797 scopus 로고
    • Artificial neural network modeling of rainfall-runoff process
    • HSU K., GUPTA H. V., and SOROOSHIAN S., 1995: Artificial neural network modeling of rainfall-runoff process. Water Resour. Res., 31, 2517-2530.
    • (1995) Water Resour. Res. , vol.31 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 27
    • 12544259920 scopus 로고    scopus 로고
    • Daily river flow forecasting using artificial neural networks and auto-regressive models
    • KISI O., 2005: Daily river flow forecasting using artificial neural networks and auto-regressive models. Turkish J. Eng. Env. Sci., 29, 9-20.
    • (2005) Turkish J. Eng. Env. Sci. , vol.29 , pp. 9-20
    • Kisi, O.1
  • 28
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • LIN J. Y., CHENG C. T. and CHAU K. W., 2006: Using support vector machines for long-term discharge prediction. Hydrological Sciences J., 51, 4, 599-612.
    • (2006) Hydrological Sciences J. , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 29
    • 0034723860 scopus 로고    scopus 로고
    • Advance flood forecasting for flood stricken Bangladesh with a fuzzy reasoning method
    • LIONG S. Y., LIM W. H., KOJIRI T., and HORI H., 2006: Advance flood forecasting for flood stricken Bangladesh with a fuzzy reasoning method. Hydrol. Process, 14, 431-448.
    • (2006) Hydrol. Process , vol.14 , pp. 431-448
    • Liong, S.Y.1    Lim, W.H.2    Kojiri, T.3    Hori, H.4
  • 30
    • 62349118015 scopus 로고    scopus 로고
    • Feature selection with dynamic mutual information
    • LIU H., SUN J., LIU L. and ZHANG H., 2009: Feature selection with dynamic mutual information. Pattern Recognition, 42, 7, 1330-1339.
    • (2009) Pattern Recognition , vol.42 , Issue.7 , pp. 1330-1339
    • Liu, H.1    Sun, J.2    Liu, L.3    Zhang, H.4
  • 31
    • 0346687459 scopus 로고    scopus 로고
    • Application of fuzzy logic to the seasonal runoff
    • MAHABIR C., HICKS F. E., and FAYEK A. R., 2000: Application of fuzzy logic to the seasonal runoff. Hydrol. Process, 17, 3749-3762.
    • (2000) Hydrol. Process , vol.17 , pp. 3749-3762
    • Mahabir, C.1    Hicks, F.E.2    Fayek, A.R.3
  • 32
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications
    • MAIER H.R. AND DANDY G. C., 1998: Neural networks for the prediction and forecasting of water resources variables: A review of modeling issues and applications. Environmental Modeling and Software, 15, 101-123.
    • (1998) Environmental Modeling and Software , vol.15 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 33
    • 84963342677 scopus 로고
    • Advances in the linguistic synthesis of fuzzy controllers
    • MAMDANI E. A., 1976: Advances in the linguistic synthesis of fuzzy controllers. Int. J. Man-Machine Studies, 8, 669-678.
    • (1976) Int. J. Man-Machine Studies , vol.8 , pp. 669-678
    • Mamdani, E.A.1
  • 34
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • MAMDANI E. A. and ASSILIAN S., 1975: An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Studies, 7, 1-3.
    • (1975) Int. J. Man-Machine Studies , vol.7 , pp. 1-3
    • Mamdani, E.A.1    Assilian, S.2
  • 36
    • 0003696207 scopus 로고    scopus 로고
    • PhD thesis, Department of Civil Engineering. Colorado State University. Fort Collins. Colorado
    • MARKUS M., 1997: Application of neural networks in streamflow forecasting. PhD thesis, Department of Civil Engineering. Colorado State University. Fort Collins. Colorado.
    • (1997) Application of neural networks in streamflow forecasting.
    • Markus, M.1
  • 37
    • 44749087176 scopus 로고    scopus 로고
    • Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems
    • MAY R. J., DANDY G. C., MAIER H. R., and NIXON J. B., 2008a: Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems. Environmental Modeling and Software, 23, 1289-1299.
    • (2008) Environmental Modeling and Software , vol.23 , pp. 1289-1299
    • May, R.J.1    Dandy, G.C.2    Maier, H.R.3    Nixon, J.B.4
  • 38
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • MAY R. J., MAIER H. R., DANDY G. C., and FERNANDO T. G., 2008b: Non-linear variable selection for artificial neural networks using partial mutual information. Environmental Modeling and Software, 23, 1312-1326.
    • (2008) Environmental Modeling and Software , vol.23 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.G.4
  • 39
    • 34249938798 scopus 로고    scopus 로고
    • Fuzzy computing based rainfall-runoff model for real time flood forecasting
    • NAYAK P. C., SUDHEER K. P. and RAMASASTRI K. S., 2004a: Fuzzy computing based rainfall-runoff model for real time flood forecasting. Hydrol. Process, 17, 3749-3762.
    • (2004) Hydrol. Process , vol.17 , pp. 3749-3762
    • Nayak, P.C.1    Sudheer, K.P.2    Ramasastri, K.S.3
  • 40
    • 33845620661 scopus 로고    scopus 로고
    • Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds
    • PULIDO-CALVO I. and PORTELA, M. M., 2007: Application of neural approaches to one-step daily flow forecasting in Portuguese watersheds. J. Hydrol., 332, 1-15.
    • (2007) J. Hydrol. , vol.332 , pp. 1-15
    • Pulido-Calvo, I.1    Portela, M.M.2
  • 41
    • 0029663691 scopus 로고    scopus 로고
    • Fuzzy learning decomposition for the scheduling of hydroelectric power systems
    • SAAD M., BIGRAS P., TURGEON A., and DUQUETTE R., 1996: Fuzzy learning decomposition for the scheduling of hydroelectric power systems. Water Resour. Res., 32, 179-186.
    • (1996) Water Resour. Res. , vol.32 , pp. 179-186
    • Saad, M.1    Bigras, P.2    Turgeon, A.3    Duquette, R.4
  • 42
    • 33745101017 scopus 로고    scopus 로고
    • A comparative fuzzy logic approach to runoff coefficient and runoff estimation
    • SEN Z. and ALTUNKAYNAK A., 2006: A comparative fuzzy logic approach to runoff coefficient and runoff estimation. Hydrol. Process, 20, 1993-2009.
    • (2006) Hydrol. Process , vol.20 , pp. 1993-2009
    • Sen, Z.1    Altunkaynak, A.2
  • 43
    • 0342506462 scopus 로고    scopus 로고
    • Application of a neural network technique to rainfall-runoff modeling
    • SHAMSELDIN A. Y., 1997: Application of a neural network technique to rainfall-runoff modeling. J. Hydrol., 199, 272-293.
    • (1997) J. Hydrol. , vol.199 , pp. 272-293
    • Shamseldin, A.Y.1
  • 44
    • 0037199712 scopus 로고    scopus 로고
    • River flow forecasting: Use of phase space reconstruction and artificial neural networks approaches
    • SIVAKUMAR B., JAYAWARDENA A. W. and FERNANDO T. M. K. G., 2002: River flow forecasting: Use of phase space reconstruction and artificial neural networks approaches. J. Hydrol., 265, 225-245.
    • (2002) J. Hydrol. , vol.265 , pp. 225-245
    • Sivakumar, B.1    Jayawardena, A.W.2    Fernando, T.M.K.G.3
  • 46
    • 4043137356 scopus 로고    scopus 로고
    • A tutorial on support vector regression
    • SMOLA A. J., SCHLKOPF B., 2004: A tutorial on support vector regression. Statistics and Computing, 14, 199-222.
    • (2004) Statistics and Computing , vol.14 , pp. 199-222
    • Smola, A.J.1    Schlkopf, B.2
  • 51
    • 84858254687 scopus 로고    scopus 로고
    • Fuzzy modeling by active learning method
    • 1st Edn., In-Tech Publisher
    • TAHERI SHAHRAIYNI H., 2010: Fuzzy modeling by active learning method. Advanced Technologies, 1st Edn., In-Tech Publisher.
    • (2010) Advanced Technologies
    • Taheri Shahraiyni, H.1
  • 54
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • TOKAR A. S. and JOHNSON P. A., 1999: Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng., ASCE, 4, 232-239.
    • (1999) J. Hydrol. Eng., ASCE , vol.4 , pp. 232-239
    • Tokar, A.S.1    Johnson, P.A.2
  • 55
    • 33751081243 scopus 로고    scopus 로고
    • ANN and Fuzzy logic models for simulating event-based rainfall-runoff
    • TAYFUR, G. and SINGH, V.P., 2006: ANN and Fuzzy Logic Models for Simulating Event-Based Rainfall-Runoff. J. Hydraul. Engng, 132, 12, 1321-1330.
    • (2006) J. Hydraul. Engng , vol.132 , Issue.12 , pp. 1321-1330
    • Tayfur, G.1    Singh, V.P.2
  • 56
  • 57
  • 60
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • WANG W. C., CHAU K. W., CHENG C. T. and QIU L., 2009: A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J. Hydrol., 374, 3-4, 294-306.
    • (2009) J. Hydrol. , vol.374 , Issue.3-4 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 61
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques
    • doi:10.1029/2007WR006737
    • WU C.L., CHAU K. W. and LI Y. S., 2009: Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques. Water Resour. Res., 45, W08432, doi:10.1029/2007WR006737.
    • (2009) Water Resour. Res. , vol.45
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 62
    • 0030162090 scopus 로고    scopus 로고
    • Calibration of conceptual rainfall-runoff models: Sensitivity to calibration data
    • YAPO P., GUPTA V. K., and SOROOSHIAN S., 1996: Calibration of Conceptual Rainfall-Runoff Models: Sensitivity to Calibration Data. J. Hydrol., 181, 23-48.
    • (1996) J. Hydrol. , vol.181 , pp. 23-48
    • Yapo, P.1    Gupta, V.K.2    Sorooshian, S.3
  • 63
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • YU P.S., CHEN S.T., and CHANG I.F., 2006: Support vector regression for real-time flood stage forecasting. J. Hydrol., 328, 704-716.
    • (2006) J. Hydrol. , vol.328 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 65
    • 0033019602 scopus 로고    scopus 로고
    • Short-term streamflow forecasting using artificial neural networks
    • ZEALAND C. M., BURN D. H., and SIMONOVIC S. P., 1999: Short-term streamflow forecasting using artificial neural networks. J. Hydrol., 214, 32-48.
    • (1999) J. Hydrol. , vol.214 , pp. 32-48
    • Zealand, C.M.1    Burn, D.H.2    Simonovic, S.P.3
  • 66
    • 37249083060 scopus 로고    scopus 로고
    • Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    • doi:10.1016/j.asoc.2007.07.011
    • ZOUNEMAT-KERMANI M., TESHNEHLAB M., 2007: Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Appl. Soft Comput. J., doi:10.1016/j.asoc.2007.07.011.
    • (2007) Appl. Soft Comput.J.
    • Zounemat-Kermani, M.1    Teshnehlab, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.