메뉴 건너뛰기




Volumn 8, Issue 4, 2012, Pages

Using machine learning to improve automatic vectorization

Author keywords

[No Author keywords available]

Indexed keywords

ASSEMBLY CODE; AUTOMATIC VECTORIZATION; BEST CHOICE; COMPILE TIME; COST MODELS; CURRENT PRODUCTION; HIGH-LEVEL FEATURES; LOOP TRANSFORMATION; MACHINE-LEARNING; MODERN PROCESSORS; OFFLINE; STENCIL COMPUTATIONS; TENSOR CONTRACTION;

EID: 84857819522     PISSN: 15443566     EISSN: 15443973     Source Type: Journal    
DOI: 10.1145/2086696.2086729     Document Type: Article
Times cited : (51)

References (33)
  • 5
    • 70449959487 scopus 로고    scopus 로고
    • CHiLL: A framework for composing high-level loop transformations
    • University of Southern California
    • CHEN, C., CHAME, J., AND HALL, M. 2008. CHiLL: A framework for composing high-level loop transformations. Tech. rep. 08-897, University of Southern California.
    • (2008) Tech. Rep. 08-897
    • Chen, C.1    Chame, J.2    Hall, M.3
  • 6
    • 34548807203 scopus 로고    scopus 로고
    • Model-guided empirical optimization for multimedia extension architectures: A case study
    • CHEN, C., SHIN, J., KINTALI, S., CHAME, J., AND HALL, M. 2007. Model-guided empirical optimization for multimedia extension architectures: A case study. In Proceedings of IPDPS.
    • (2007) Proceedings of IPDPS
    • Chen, C.1    Shin, J.2    Kintali, S.3    Chame, J.4    Hall, M.5
  • 8
    • 0036679993 scopus 로고    scopus 로고
    • Adaptive optimizing compilers for the 21st century
    • DOI 10.1023/A:1015729001611
    • COOPER, K. D., SUBRAMANIAN, D., AND TORCZON, L. 2002. Adaptive optimizing compilers for the 21st century. J. Supercomput. 23, 1, 7-22. (Pubitemid 34772138)
    • (2002) Journal of Supercomputing , vol.23 , Issue.1 , pp. 7-22
    • Cooper, K.D.1    Subramanian, D.2    Torczon, L.3
  • 9
    • 84855334530 scopus 로고    scopus 로고
    • An introduction to coupled cluster theory for computational chemists
    • CRAWFORD, T. AND SCHAEFER III, H. 2000. An introduction to coupled cluster theory for computational chemists. In Reviews in Computational Chemistry, Vol. 14, 33-136.
    • (2000) Reviews in Computational Chemistry , vol.14 , pp. 33-136
    • Crawford, T.1    SCHAEFER III, H.2
  • 11
    • 76749114815 scopus 로고    scopus 로고
    • Portable compiler optimization across embedded programs and microarchitectures using machine learning
    • DUBACH, C., JONES, T. M., BONILLA, E. V., FURSIN, G., AND O'BOYLE, M. F. 2009. Portable compiler optimization across embedded programs and microarchitectures using machine learning. In Proceedings of MICRO.
    • (2009) Proceedings of MICRO
    • Dubach, C.1    Jones, T.M.2    Bonilla, E.V.3    Fursin, G.4    O'Boyle, M.F.5
  • 12
    • 8344245462 scopus 로고    scopus 로고
    • Vectorization for simd architectures with alignment constraints
    • EICHENBERGER, A., WU, P., AND O'BRIEN, K. 2004. Vectorization for simd architectures with alignment constraints. In Proceedings of PLDI.
    • (2004) Proceedings of PLDI
    • Eichenberger, A.1    Wu, P.2    O'Brien, K.3
  • 15
    • 33746686278 scopus 로고    scopus 로고
    • Automatic selection of compiler options using non-parametric inferential statistics
    • HANEDA, M., KNIJNENBURG, P. M. W., AND WIJSHOFF, H. A. G. 2005. Automatic selection of compiler options using non-parametric inferential statistics. In Proceedings of PACT.
    • (2005) Proceedings of PACT
    • Haneda, M.1    Knijnenburg, P.M.W.2    Wijshoff, H.A.G.3
  • 17
    • 0345566357 scopus 로고    scopus 로고
    • Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories
    • HIRATA, S. 2003. Tensor contraction engine: Abstraction and automated parallel implementation of configuration-interaction, coupled-cluster, and many-body perturbation theories. J. Physical Chem. A 107, 46, 9887-9897.
    • (2003) J. Physical Chem. A , vol.107 , Issue.46 , pp. 9887-9897
    • Hirata, S.1
  • 20
    • 0034512401 scopus 로고    scopus 로고
    • Combined selection of tile sizes and unroll factors using iterative compilation
    • KISUKI, T., KNIJNENBURG, P. M. W., AND O'BOYLE, M. F. P. 2000. Combined selection of tile sizes and unroll factors using iterative compilation. In Proceedings of PACT.
    • (2000) Proceedings of PACT
    • Kisuki, T.1    Knijnenburg, P.M.W.2    O'Boyle, M.F.P.3
  • 21
    • 0034446825 scopus 로고    scopus 로고
    • Exploiting superword level parallelism with multimedia instruction sets
    • LARSEN, S. AND AMARASINGHE, S. P. 2000. Exploiting superword level parallelism with multimedia instruction sets. In Proceedings of PLDI.
    • (2000) Proceedings of PLDI
    • Larsen, S.1    Amarasinghe, S.P.2
  • 23
    • 84877962166 scopus 로고    scopus 로고
    • A machine learning approach to automatic production of compiler heuristics
    • MONSIFROT, A., BODIN, F., AND QUINIOU, R. 2002. A machine learning approach to automatic production of compiler heuristics. In Proceedings of AIMSA. 41-50.
    • (2002) Proceedings of AIMSA , pp. 41-50
    • Monsifrot, A.1    Bodin, F.2    Quiniou, R.3
  • 25
  • 26
    • 63549093768 scopus 로고    scopus 로고
    • Outer-loop vectorization: Revisited for short simd architectures
    • NUZMAN, D. AND ZAKS, A. 2008. Outer-loop vectorization: revisited for short simd architectures. In Proceedings of PACT.
    • (2008) Proceedings of PACT
    • Nuzman, D.1    Zaks, A.2
  • 30
    • 0024935630 scopus 로고
    • More iteration space tiling
    • WOLFE, M. 1989. More iteration space tiling. In Proceedings of SC.
    • (1989) Proceedings of SC
    • Wolfe, M.1
  • 32
    • 84857842775 scopus 로고    scopus 로고
    • Exploring the optimization space of dense linear algebra kernels
    • YI, Q. AND QASEM, A. 2008. Exploring the optimization space of dense linear algebra kernels. In Proceedings of LCPC.
    • (2008) Proceedings of LCPC
    • Q, Y.I.1    Qasem, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.