-
2
-
-
79953127788
-
Autophagosome formation in mammalian cells
-
Burman C, Ktistakis NT. Autophagosome formation in mammalian cells. Semin Immunopathol 2010;32:397-413
-
(2010)
Semin Immunopathol
, vol.32
, pp. 397-413
-
-
Burman, C.1
Ktistakis, N.T.2
-
3
-
-
79251577061
-
The regulation of autophagyunanswered questions
-
Chen Y, Klionsky DJ. The regulation of autophagyunanswered questions. J Cell Sci 2011;124:161-70
-
(2011)
J Cell Sci
, vol.124
, pp. 161-170
-
-
Chen, Y.1
Klionsky, D.J.2
-
4
-
-
33846260837
-
DRAM links autophagy to p53 and programmed cell death
-
Crighton D, Wilkinson S, Ryan KM. DRAM links autophagy to p53 and programmed cell death. Autophagy 2007;3:72-4
-
(2007)
Autophagy
, vol.3
, pp. 72-74
-
-
Crighton, D.1
Wilkinson, S.2
Ryan, K.M.3
-
5
-
-
0442323561
-
Autophagy: In sickness and in health
-
Cuervo AM. Autophagy: In sickness and in health. Trends Cell Biol 2004;14:70-7
-
(2004)
Trends Cell Biol
, vol.14
, pp. 70-77
-
-
Cuervo, A.M.1
-
6
-
-
0030807624
-
A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole
-
Darsow T, Rieder SE, Emr SD. A multispecificity syntaxin homologue, Vam3p, essential for autophagic and biosynthetic protein transport to the vacuole. J Cell Biol 1997;138:517-29
-
(1997)
J Cell Biol
, vol.138
, pp. 517-529
-
-
Darsow, T.1
Rieder, S.E.2
Emr, S.D.3
-
7
-
-
79956358522
-
Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L)
-
Fan W, Nassiri A, Zhong Q. Autophagosome targeting and membrane curvature sensing by Barkor/Atg14(L). Proc Natl Acad Sci USA 2011;108:7769-74
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 7769-7774
-
-
Fan, W.1
Nassiri, A.2
Zhong, Q.3
-
8
-
-
70349634805
-
Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux
-
Farkas T, Hoyer-Hansen M, Jäättelä M. Identification of novel autophagy regulators by a luciferase-based assay for the kinetics of autophagic flux. Autophagy 2009;5:1018-25
-
(2009)
Autophagy
, vol.5
, pp. 1018-1025
-
-
Farkas, T.1
Hoyer-Hansen, M.2
Jäättelä, M.3
-
9
-
-
34347344990
-
Ambra1 regulates autophagy and development of the nervous system
-
Fimia GM, Stoykova A, Romagnoli A, Giunta L, Di Bartolomeo S, Nardacci R, Corazzari M, Fuoco C, Ucar A, Schwartz P, Gruss P, Piacentini M, Chowdhury K, Cecconi F. Ambra1 regulates autophagy and development of the nervous system. Nature 2007;447:1121-5
-
(2007)
Nature
, vol.447
, pp. 1121-1125
-
-
Fimia, G.M.1
Stoykova, A.2
Romagnoli, A.3
Giunta, L.4
di Bartolomeo, S.5
Nardacci, R.6
Corazzari, M.7
Fuoco, C.8
Ucar, A.9
Schwartz, P.10
Gruss, P.11
Piacentini, M.12
Chowdhury, K.13
Cecconi, F.14
-
10
-
-
77953543377
-
The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond
-
Funderburk SF, Wang QJ, Yue Z. The Beclin 1-VPS34 complex-at the crossroads of autophagy and beyond. Trends Cell Biol 2010;20:355-62
-
(2010)
Trends Cell Biol
, vol.20
, pp. 355-362
-
-
Funderburk, S.F.1
Wang, Q.J.2
Yue, Z.3
-
11
-
-
66449083078
-
ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy
-
Ganley IG, du Lam H, Wang J, Ding X, Chen S, Jiang X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J Biol Chem 2009;284: 12297-305
-
(2009)
J Biol Chem
, vol.284
, pp. 12297-12305
-
-
Ganley, I.G.1
du Lam, H.2
Wang, J.3
Ding, X.4
Chen, S.5
Jiang, X.6
-
12
-
-
77955015772
-
Calcium and energy: Making the cake and eating it too?
-
Green DR, Wang R. Calcium and energy: making the cake and eating it too? Cell 2010;142:200-2
-
(2010)
Cell
, vol.142
, pp. 200-202
-
-
Green, D.R.1
Wang, R.2
-
13
-
-
42949139481
-
AMPK phosphorylation of raptor mediates a metabolic checkpoint
-
Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008;30: 214-26
-
(2008)
Mol Cell
, vol.30
, pp. 214-226
-
-
Gwinn, D.M.1
Shackelford, D.B.2
Egan, D.F.3
Mihaylova, M.M.4
Mery, A.5
Vasquez, D.S.6
Turk, B.E.7
Shaw, R.J.8
-
14
-
-
77952495224
-
Mitochondria supply membranes for autophagosome biogenesis during starvation
-
Hailey DW, Rambold AS, Satpute-Krishnan P, Mitra K, Sougrat R, Kim PK, Lippincott-Schwartz J. Mitochondria supply membranes for autophagosome biogenesis during starvation. Cell 2010;141:656-67
-
(2010)
Cell
, vol.141
, pp. 656-667
-
-
Hailey, D.W.1
Rambold, A.S.2
Satpute-Krishnan, P.3
Mitra, K.4
Sougrat, R.5
Kim, P.K.6
Lippincott-Schwartz, J.7
-
15
-
-
71649087199
-
A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation
-
Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A. A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 2009;11:1433-7
-
(2009)
Nat Cell Biol
, vol.11
, pp. 1433-1437
-
-
Hayashi-Nishino, M.1
Fujita, N.2
Noda, T.3
Yamaguchi, A.4
Yoshimori, T.5
Yamamoto, A.6
-
16
-
-
72549095406
-
Regulation mechanisms and signaling pathways of autophagy
-
He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009;43:67-93
-
(2009)
Annu Rev Genet
, vol.43
, pp. 67-93
-
-
He, C.1
Klionsky, D.J.2
-
18
-
-
34548265278
-
Autophagy and human disease
-
Huang J, Klionsky DJ. Autophagy and human disease. Cell Cycle 2007;6:1837-49
-
(2007)
Cell Cycle
, vol.6
, pp. 1837-1849
-
-
Huang, J.1
Klionsky, D.J.2
-
19
-
-
0035192612
-
Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion
-
Ishihara N, Hamasaki M, Yokota S, Suzuki K, Kamada Y, Kihara A. Autophagosome requires specific early Sec proteins for its formation and NSF/SNARE for vacuolar fusion. Mol Biol Cell 2001;12:3690-702
-
(2001)
Mol Biol Cell
, vol.12
, pp. 3690-3702
-
-
Ishihara, N.1
Hamasaki, M.2
Yokota, S.3
Suzuki, K.4
Kamada, Y.5
Kihara, A.6
-
20
-
-
0034707036
-
A ubiquitin-like system mediates protein lipidation
-
Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N. A ubiquitin-like system mediates protein lipidation. Nature 2000;408:488-92
-
(2000)
Nature
, vol.408
, pp. 488-492
-
-
Ichimura, Y.1
Kirisako, T.2
Takao, T.3
Satomi, Y.4
Shimonishi, Y.5
Ishihara, N.6
-
21
-
-
59249089394
-
Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG
-
Itakura E, Kishi C, Inoue K, Mizushima N. Beclin 1 forms two distinct phosphatidylinositol 3-kinase complexes with mammalian Atg14 and UVRAG. Mol Biol Cell 2008;19: 5360-72
-
(2008)
Mol Biol Cell
, vol.19
, pp. 5360-5372
-
-
Itakura, E.1
Kishi, C.2
Inoue, K.3
Mizushima, N.4
-
22
-
-
78649242978
-
HMGB1: A novel Beclin 1-binding protein active in autophagy
-
Kang R, Livesey KM, Zeh HJ, Loze MT, Tang D. HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy 2010;6:1209-11
-
(2010)
Autophagy
, vol.6
, pp. 1209-1211
-
-
Kang, R.1
Livesey, K.M.2
Zeh, H.J.3
Loze, M.T.4
Tang, D.5
-
23
-
-
0032896760
-
Apg7p/Cvt2p is required for the Cvt, macroautophagy and peroxisome degradation pathway
-
Kim J, Dalton VM, Eggerton KP, Scott SV, Klionsky DJ. Apg7p/Cvt2p is required for the Cvt, macroautophagy and peroxisome degradation pathway. Mol Biol Cell 1999;10: 1337-51
-
(1999)
Mol Biol Cell
, vol.10
, pp. 1337-1351
-
-
Kim, J.1
Dalton, V.M.2
Eggerton, K.P.3
Scott, S.V.4
Klionsky, D.J.5
-
24
-
-
14044277429
-
The molecular machinery of autophagy: Unanswered questions
-
Klionsky DJ. The molecular machinery of autophagy: unanswered questions. J Cell Sci 2005;118:7-18
-
(2005)
J Cell Sci
, vol.118
, pp. 7-18
-
-
Klionsky, D.J.1
-
25
-
-
0034537290
-
Autophagy as a regulated pathway of cellular degradation
-
Klionsky DJ, Emr SD. Autophagy as a regulated pathway of cellular degradation. Science 2000;290:1717-21
-
(2000)
Science
, vol.290
, pp. 1717-1721
-
-
Klionsky, D.J.1
Emr, S.D.2
-
26
-
-
77956172813
-
Physiological role of autophagy as an intracellular recycling system: With an emphasis on nutrient metabolism
-
Kuma A, Mizushima N. Physiological role of autophagy as an intracellular recycling system: with an emphasis on nutrient metabolism. Semin Cell Dev Biol 2010;7:683-90
-
(2010)
Semin Cell Dev Biol
, vol.7
, pp. 683-690
-
-
Kuma, A.1
Mizushima, N.2
-
27
-
-
0037166241
-
Formation of the approximately 350 kDa Apg12-Apg5-Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast
-
Kuma A, Mizuchima N, Ishihara N, Ohsumi, Y. Formation of the approximately 350 kDa Apg12-Apg5-Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 2002;277:18619-25
-
(2002)
J Biol Chem
, vol.277
, pp. 18619-18625
-
-
Kuma, A.1
Mizuchima, N.2
Ishihara, N.3
Ohsumi, Y.4
-
28
-
-
83455169115
-
IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux
-
Lee H, Noh JY, Oh Y, Kim Y, Chang JW, Chung CW, Lee ST, Kim M, Ryu H, Jung YK. IRE1 plays an essential role in ER stress-mediated aggregation of mutant huntingtin via the inhibition of autophagy flux. Hum Mol Genet 2012;21:101-14
-
(2012)
Hum Mol Genet
, vol.21
, pp. 101-114
-
-
Lee, H.1
Noh, J.Y.2
Oh, Y.3
Kim, Y.4
Chang, J.W.5
Chung, C.W.6
Lee, S.T.7
Kim, M.8
Ryu, H.9
Jung, Y.K.10
-
29
-
-
34548492271
-
ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration
-
Lee JA, Beigneux A, Ahmad ST, Young SG, Gao FB. ESCRT-III dysfunction causes autophagosome accumulation and neurodegeneration. Curr Biol 2007;17:1561-7
-
(2007)
Curr Biol
, vol.17
, pp. 1561-1567
-
-
Lee, J.A.1
Beigneux, A.2
Ahmad, S.T.3
Young, S.G.4
Gao, F.B.5
-
30
-
-
77953913051
-
Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations
-
Lee JH, Yu WH, Kumar A, Lee S, Mohan PS, Peterhoff CM, Wolfe DM, Martinez-Vicente M, Massey AC, Sovak G, Uchiyama Y, Westaway D, Cuervo AM, Nixon RA. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010; 141:1146-58
-
(2010)
Cell
, vol.141
, pp. 1146-1158
-
-
Lee, J.H.1
Yu, W.H.2
Kumar, A.3
Lee, S.4
Mohan, P.S.5
Peterhoff, C.M.6
Wolfe, D.M.7
Martinez-Vicente, M.8
Massey, A.C.9
Sovak, G.10
Uchiyama, Y.11
Westaway, D.12
Cuervo, A.M.13
Nixon, R.A.14
-
31
-
-
1842583789
-
Development by self-digestion: Molecular mechanisms and biological functions of autophagy
-
Levine B, Klionsky DJ. Development by self-digestion: Molecular mechanisms and biological functions of autophagy. Dev Cell 2004;6:463-77
-
(2004)
Dev Cell
, vol.6
, pp. 463-477
-
-
Levine, B.1
Klionsky, D.J.2
-
32
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132:27-42
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
33
-
-
48249092267
-
Bcl-2 family members: Dual regulators of apoptosis and autophagy
-
Levine B, Sinha S, Kroemer G. Bcl-2 family members: dual regulators of apoptosis and autophagy. Autophagy 2008;4: 600-6
-
(2008)
Autophagy
, vol.4
, pp. 600-606
-
-
Levine, B.1
Sinha, S.2
Kroemer, G.3
-
34
-
-
46449120732
-
Beclin 1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocyticc trafficking
-
Liang C, Lee JS, Inn KS, Gack MU, Li Q, Roverts EA, Vergne I, Deretic V, Feng P, Akazawa C. Beclin 1-binding UVRAG targets the class C Vps complex to coordinate autophagosome maturation and endocyticc trafficking. Nat Cell Biol 2008;10:776-87
-
(2008)
Nat Cell Biol
, vol.10
, pp. 776-787
-
-
Liang, C.1
Lee, J.S.2
Inn, K.S.3
Gack, M.U.4
Li, Q.5
Roverts, E.A.6
Vergne, I.7
Deretic, V.8
Feng, P.9
Akazawa, C.10
-
35
-
-
0001488499
-
Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein
-
Liang XH, Kleeman LK, Jiang HH, Gordon G, Goldman JE, Berry G, Herman B, Levine B. Protection against fatal Sindbis virus encephalitis by Beclin, a novel Bcl-2-interacting protein. J Virol 1998;72:8586-96
-
(1998)
J Virol
, vol.72
, pp. 8586-8596
-
-
Liang, X.H.1
Kleeman, L.K.2
Jiang, H.H.3
Gordon, G.4
Goldman, J.E.5
Berry, G.6
Herman, B.7
Levine, B.8
-
36
-
-
67549139908
-
Vesicular trafficking and autophagosome formation
-
Longatti A, Tooze SA. Vesicular trafficking and autophagosome formation. Cell Death Differ 2009;16:956-65
-
(2009)
Cell Death Differ
, vol.16
, pp. 956-965
-
-
Longatti, A.1
Tooze, S.A.2
-
37
-
-
77957198526
-
An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis
-
Mari M, Griffith J, Rieter E, Krishnappa L, Klionsky DJ, Reggiori F. An Atg9-containing compartment that functions in the early steps of autophagosome biogenesis. J Cell Biol 2010;190:1005-22
-
(2010)
J Cell Biol
, vol.190
, pp. 1005-1022
-
-
Mari, M.1
Griffith, J.2
Rieter, E.3
Krishnappa, L.4
Klionsky, D.J.5
Reggiori, F.6
-
38
-
-
3042723794
-
Autophagy: Molecular mechanisms, physiological functions and relevance in human pathology
-
Mariño G, López-Otín C. Autophagy: molecular mechanisms, physiological functions and relevance in human pathology. Cell Mol Life Sci 2004;61:1439-54
-
(2004)
Cell Mol Life Sci
, vol.61
, pp. 1439-1454
-
-
Mariño, G.1
López-Otín, C.2
-
39
-
-
64049086758
-
Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages
-
Matsunaga K, Saitoh T, Tabata K, Omori H, Satoh T, Kurotori N, Maejima I, Shirahama-Noda K, Ichimura T, Isobe T. Two Beclin 1-binding proteins, Atg14L and Rubicon, reciprocally regulate autophagy at different stages. Nat Cell Biol 2009;11: 385-96
-
(2009)
Nat Cell Biol
, vol.11
, pp. 385-396
-
-
Matsunaga, K.1
Saitoh, T.2
Tabata, K.3
Omori, H.4
Satoh, T.5
Kurotori, N.6
Maejima, I.7
Shirahama-Noda, K.8
Ichimura, T.9
Isobe, T.10
-
40
-
-
0031040763
-
Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF)
-
Mayer A, Wickner W. Docking of yeast vacuoles is catalyzed by the Ras-like GTPase Ypt7p after symmetric priming by Sec18p (NSF). J Cell Biol 1997;136:307-17
-
(1997)
J Cell Biol
, vol.136
, pp. 307-317
-
-
Mayer, A.1
Wickner, W.2
-
41
-
-
67549110195
-
A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy
-
Mercer CA, Kaliappan A, Dennis PB. A novel, human Atg13 binding protein, Atg101, interacts with ULK1 and is essential for macroautophagy. Autophagy 2009;5:649-62
-
(2009)
Autophagy
, vol.5
, pp. 649-662
-
-
Mercer, C.A.1
Kaliappan, A.2
Dennis, P.B.3
-
42
-
-
1542513774
-
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro
-
Mills KR, Reginato M, Debnath J, Queenan B, Brugge JS. Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is required for induction of autophagy during lumen formation in vitro. Proc Natl Acad Sci USA 2004;101: 3438-43
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, pp. 3438-3443
-
-
Mills, K.R.1
Reginato, M.2
Debnath, J.3
Queenan, B.4
Brugge, J.S.5
-
43
-
-
0032563798
-
A protein conjugation system essential for autophagy
-
Mizushima N, Noda T, Yoshimori T, Tanaka Y, Ishii T, George MD, Klionsky DJ, Ohsumi M, Ohsumi Y. A protein conjugation system essential for autophagy. Nature 1998;395:395-8
-
(1998)
Nature
, vol.395
, pp. 395-398
-
-
Mizushima, N.1
Noda, T.2
Yoshimori, T.3
Tanaka, Y.4
Ishii, T.5
George, M.D.6
Klionsky, D.J.7
Ohsumi, M.8
Ohsumi, Y.9
-
44
-
-
0033565655
-
Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway
-
Mizushima N, Noda T, Ohsumi Y. Apg16p is required for the function of the Apg12p-Apg5p conjugate in the yeast autophagy pathway. EMBO 1999;18:3888-96
-
(1999)
EMBO
, vol.18
, pp. 3888-3896
-
-
Mizushima, N.1
Noda, T.2
Ohsumi, Y.3
-
45
-
-
39849109338
-
Autophagy fights disease through cellular self digestion
-
Mizushima N, Levine B, Cuervo AM, Klionsky DJ. Autophagy fights disease through cellular self digestion. Nature 2008; 451:1069-75
-
(2008)
Nature
, vol.451
, pp. 1069-1075
-
-
Mizushima, N.1
Levine, B.2
Cuervo, A.M.3
Klionsky, D.J.4
-
46
-
-
77951221542
-
The role of the Atg1/ULK1 complex in autophagy regulation
-
Mizushima, N. The role of the Atg1/ULK1 complex in autophagy regulation. Curr Opin Cell Biol 2010;22:132-9
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 132-139
-
-
Mizushima, N.1
-
47
-
-
0023065242
-
Intracellular protein catabolism and its control during nutrient deprivation and supply
-
Mortimore GE, Pösö AR. Intracellular protein catabolism and its control during nutrient deprivation and supply. Annu Rev Nutr 1987;7:539-64
-
(1987)
Annu Rev Nutr
, vol.7
, pp. 539-564
-
-
Mortimore, G.E.1
Pösö, A.R.2
-
48
-
-
26444575415
-
Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OHkinase
-
Nobukuni T, Joaquin M, Roccio M, Dann SG, Kim SY, Gulati P, Byfield MP, Backer JM, Natt F, Bos JL, Zwartkruis FJ, Thomas G. Amino acids mediate mTOR/raptor signaling through activation of class 3 phosphatidylinositol 3OHkinase. Proc Natl Acad Sci USA 2005;102:14238-43
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 14238-14243
-
-
Nobukuni, T.1
Joaquin, M.2
Roccio, M.3
Dann, S.G.4
Kim, S.Y.5
Gulati, P.6
Byfield, M.P.7
Backer, J.M.8
Natt, F.9
Bos, J.L.10
Zwartkruis, F.J.11
Thomas, G.12
-
49
-
-
25144457455
-
Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy
-
Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, Schneider MD, Levine B. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122:927-36
-
(2005)
Cell
, vol.122
, pp. 927-936
-
-
Pattingre, S.1
Tassa, A.2
Qu, X.3
Garuti, R.4
Liang, X.H.5
Mizushima, N.6
Packer, M.7
Schneider, M.D.8
Levine, B.9
-
50
-
-
0033978633
-
Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells
-
Petiot A, Ogier-Denis E, Blommaart EF, Meijer AJ, Codogno P. Distinct classes of phosphatidylinositol 3'-kinases are involved in signaling pathways that control macroautophagy in HT-29 cells. J Biol Chem 2000;275:992-8
-
(2000)
J Biol Chem
, vol.275
, pp. 992-998
-
-
Petiot, A.1
Ogier-Denis, E.2
Blommaart, E.F.3
Meijer, A.J.4
Codogno, P.5
-
52
-
-
20144381544
-
Essential roles of Atg5 and FADD in autophagic cell death: Dissection of autophagic cell death into vacuole formation and cell death
-
Pyo JO, Jang MH, Kwon YK, Lee HJ, Jun JI, Woo HN, Cho DH, Choi B, Lee H, Kim JH, Mizushima N, Oshumi Y, Jung YK. Essential roles of Atg5 and FADD in autophagic cell death: dissection of autophagic cell death into vacuole formation and cell death. J Biol Chem 2005;280:20722-9
-
(2005)
J Biol Chem
, vol.280
, pp. 20722-20729
-
-
Pyo, J.O.1
Jang, M.H.2
Kwon, Y.K.3
Lee, H.J.4
Jun, J.I.5
Woo, H.N.6
Cho, D.H.7
Choi, B.8
Lee, H.9
Kim, J.H.10
Mizushima, N.11
Oshumi, Y.12
Jung, Y.K.13
-
53
-
-
38849164882
-
Differential functions of Hrs and ESCRT proteins in endocytic membrane trafficking
-
Raiborg C, Malerod L, Pedersen NM, Stenmark H. Differential functions of Hrs and ESCRT proteins in endocytic membrane trafficking. Exp Cell Res 2008;314:801-13
-
(2008)
Exp Cell Res
, vol.314
, pp. 801-813
-
-
Raiborg, C.1
Malerod, L.2
Pedersen, N.M.3
Stenmark, H.4
-
54
-
-
63649086486
-
The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins
-
Raiborg C, Stenmark H. The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 2009;458:445-52
-
(2009)
Nature
, vol.458
, pp. 445-452
-
-
Raiborg, C.1
Stenmark, H.2
-
55
-
-
77955131007
-
Plasma membrane contributes to the formation of preautophagosomal structures
-
Ravikumar B, Moreau K, Jahreiss L, Puri C, Rubinsztein DC. Plasma membrane contributes to the formation of preautophagosomal structures. Nat Cell Biol 2010;12:747-57
-
(2010)
Nat Cell Biol
, vol.12
, pp. 747-757
-
-
Ravikumar, B.1
Moreau, K.2
Jahreiss, L.3
Puri, C.4
Rubinsztein, D.C.5
-
56
-
-
79551546749
-
Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex
-
Renna M, Schaffner C, Winslow AR, Menzies FM, Peden AA, Floto RA, Rubinsztein DC. Autophagic substrate clearance requires activity of the syntaxin-5 SNARE complex. J Cell Sci 2011;124:469-82
-
(2011)
J Cell Sci
, vol.124
, pp. 469-482
-
-
Renna, M.1
Schaffner, C.2
Winslow, A.R.3
Menzies, F.M.4
Peden, A.A.5
Floto, R.A.6
Rubinsztein, D.C.7
-
57
-
-
37549012209
-
The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells
-
Ropolo A, Grasso D, Pardo R, Sacchetti ML, Archange C, Lo Re A, Seux M, Nowak J, Gonzalez CD, Iovanna JL, Vaccaro MI. The pancreatitis-induced vacuole membrane protein 1 triggers autophagy in mammalian cells. J Biol Chem 2007;282:37124-33
-
(2007)
J Biol Chem
, vol.282
, pp. 37124-37133
-
-
Ropolo, A.1
Grasso, D.2
Pardo, R.3
Sacchetti, M.L.4
Archange, C.5
Lo Re, A.6
Seux, M.7
Nowak, J.8
Gonzalez, C.D.9
Iovanna, J.L.10
Vaccaro, M.I.11
-
58
-
-
0029670289
-
Protein sorting by transport vesicles
-
Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science 1996;272:227-34
-
(1996)
Science
, vol.272
, pp. 227-234
-
-
Rothman, J.E.1
Wieland, F.T.2
-
59
-
-
69449089915
-
How do ESCRT proteins control autophagy?
-
Rusten TE, Stenmark H. How do ESCRT proteins control autophagy? J Cell Sci 2009;122:2179-83
-
(2009)
J Cell Sci
, vol.122
, pp. 2179-2183
-
-
Rusten, T.E.1
Stenmark, H.2
-
60
-
-
35348869859
-
ESCRTs and Fab1 regulate distinct steps of autophagy
-
Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D. ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 2007;17:1817-25
-
(2007)
Curr Biol
, vol.17
, pp. 1817-1825
-
-
Rusten, T.E.1
Vaccari, T.2
Lindmo, K.3
Rodahl, L.M.4
Nezis, I.P.5
Sem-Jacobsen, C.6
Wendler, F.7
Vincent, J.P.8
Brech, A.9
Bilder, D.10
-
61
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y, Bar-Peled L, Zoncu R, Markhard AL, Nada S, Sabatini DM. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010;141:290-303
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
Bar-Peled, L.2
Zoncu, R.3
Markhard, A.L.4
Nada, S.5
Sabatini, D.M.6
-
62
-
-
34248994604
-
Small molecules enhance autophagy and reduce toxicity in Huntington's disease models
-
Sarkar S, Perlstein EO, Imarisio S, Pineau S, Cordenier A, Maglathlin RL, Webster JA, Lewis TA, O'Kane CJ, Schreiber SL, Rubinsztein DC. Small molecules enhance autophagy and reduce toxicity in Huntington's disease models. Nat Chem Biol 2007;3:331-8
-
(2007)
Nat Chem Biol
, vol.3
, pp. 331-338
-
-
Sarkar, S.1
Perlstein, E.O.2
Imarisio, S.3
Pineau, S.4
Cordenier, A.5
Maglathlin, R.L.6
Webster, J.A.7
Lewis, T.A.8
O'Kane, C.J.9
Schreiber, S.L.10
Rubinsztein, D.C.11
-
63
-
-
33645916698
-
Inositol and IP3 levels regulate autophagy: Biology and therapeutic speculations
-
Sarkar S, Rubinsztein DC. Inositol and IP3 levels regulate autophagy: biology and therapeutic speculations. Autophagy 2006;2:132-4
-
(2006)
Autophagy
, vol.2
, pp. 132-134
-
-
Sarkar, S.1
Rubinsztein, D.C.2
-
64
-
-
0031841313
-
Vam7p, a SNAP- 25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking
-
Sato TK, Darsow T, Emr SD. Vam7p, a SNAP- 25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking. Mol Cell Biol 1998;18: 5308-19
-
(1998)
Mol Cell Biol
, vol.18
, pp. 5308-5319
-
-
Sato, T.K.1
Darsow, T.2
Emr, S.D.3
-
65
-
-
33646503655
-
Autophagy by ARF: A short story
-
Sherr CJ. Autophagy by ARF: a short story. Mol Cell 2006;22: 436-7
-
(2006)
Mol Cell
, vol.22
, pp. 436-437
-
-
Sherr, C.J.1
-
66
-
-
0033214582
-
Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast
-
Shintani T, Mizushima N, Ogawa Y, Matsuura A, Noda T, Ohsumi Y. Apg10p, a novel protein-conjugating enzyme essential for autophagy in yeast. EMBO J 1999;18:5234-41
-
(1999)
EMBO J
, vol.18
, pp. 5234-5241
-
-
Shintani, T.1
Mizushima, N.2
Ogawa, Y.3
Matsuura, A.4
Noda, T.5
Ohsumi, Y.6
-
67
-
-
34248139628
-
Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae
-
Suzuki K, Ohsumi Y. Molecular machinery of autophagosome formation in yeast, Saccharomyces cerevisiae. FEBS Lett 2007;581:2156-61
-
(2007)
FEBS Lett
, vol.581
, pp. 2156-2161
-
-
Suzuki, K.1
Ohsumi, Y.2
-
68
-
-
34848899280
-
Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis
-
Takahashi Y, Coppola D, Matsushita N, Cualing H, Sun M, Sato Y, Liang C, Jung JU, Cheng JQ, Mule JJ et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol 2007;9:1142-51
-
(2007)
Nat Cell Biol
, vol.9
, pp. 1142-1151
-
-
Takahashi, Y.1
Coppola, D.2
Matsushita, N.3
Cualing, H.4
Sun, M.5
Sato, Y.6
Liang, C.7
Jung, J.U.8
Cheng, J.Q.9
Mule, J.J.10
-
69
-
-
0035910423
-
The human homolog of Saccharomyces cerevisiae Apg7p is a proteinactivating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3
-
Tanida I, Tanida-Miyake E, Ueno T, Kominami E. The human homolog of Saccharomyces cerevisiae Apg7p is a proteinactivating enzyme for multiple substrates including human Apg12p, GATE-16, GABARAP, and MAP-LC3. J Biol Chem 2001;276:1701-6
-
(2001)
J Biol Chem
, vol.276
, pp. 1701-1706
-
-
Tanida, I.1
Tanida-Miyake, E.2
Ueno, T.3
Kominami, E.4
-
70
-
-
77956414236
-
The origin of the autophagosomal membrane
-
Tooze SA, Yoshimori T. The origin of the autophagosomal membrane. Nat Cell Biol 2010;12:831-5
-
(2010)
Nat Cell Biol
, vol.12
, pp. 831-835
-
-
Tooze, S.A.1
Yoshimori, T.2
-
71
-
-
34548235820
-
BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy
-
Tracy K, Dibling BC, Spike BT, Knabb JR, Schumacker P, Macleod KF. BNIP3 is an RB/E2F target gene required for hypoxia-induced autophagy. Mol Cell Biol 2007;27:6229-42
-
(2007)
Mol Cell Biol
, vol.27
, pp. 6229-6242
-
-
Tracy, K.1
Dibling, B.C.2
Spike, B.T.3
Knabb, J.R.4
Schumacker, P.5
Macleod, K.F.6
-
72
-
-
77952533111
-
VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD
-
Tresse E, Salomons FA, Vesa J, Bott LC, Kimonis V, Yao TP, Dantuma NP, Taylor JP. VCP/p97 is essential for maturation of ubiquitin-containing autophagosomes and this function is impaired by mutations that cause IBMPFD. Autophagy 2010;6:217-27
-
(2010)
Autophagy
, vol.6
, pp. 217-227
-
-
Tresse, E.1
Salomons, F.A.2
Vesa, J.3
Bott, L.C.4
Kimonis, V.5
Yao, T.P.6
Dantuma, N.P.7
Taylor, J.P.8
-
73
-
-
67549135655
-
The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1
-
Vicencio JM, Ortiz C, Criollo A, Jones AW, Kepp O, Galluzzi L, Joza N, Vitale I, Morselli E, Tailler M, Castedo M, Maiuri MC, Molgó J, Szabadkai G, Lavandero S, Kroemer G. The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 2009; 16:1006-17
-
(2009)
Cell Death Differ
, vol.16
, pp. 1006-1017
-
-
Vicencio, J.M.1
Ortiz, C.2
Criollo, A.3
Jones, A.W.4
Kepp, O.5
Galluzzi, L.6
Joza, N.7
Vitale, I.8
Morselli, E.9
Tailler, M.10
Castedo, M.11
Maiuri, M.C.12
Molgó, J.13
Szabadkai, G.14
Lavandero, S.15
Kroemer, G.16
-
74
-
-
32044465506
-
TOR signaling in growth and metabolism
-
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell 2006;124:471-84
-
(2006)
Cell
, vol.124
, pp. 471-484
-
-
Wullschleger, S.1
Loewith, R.2
Hall, M.N.3
-
75
-
-
0033515592
-
Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways
-
Wurmser AE, Gary JD, Emr SD. Phosphoinositide 3-kinases and their FYVE domain-containing effectors as regulators of vacuolar/lysosomal membrane trafficking pathways. J Biol Chem 1999;274:9129-32
-
(1999)
J Biol Chem
, vol.274
, pp. 9129-9132
-
-
Wurmser, A.E.1
Gary, J.D.2
Emr, S.D.3
-
76
-
-
74949090299
-
An overview of the molecular mechanism of autophagy
-
Yang Z, Klionsky DJ. An overview of the molecular mechanism of autophagy. Curr Top Microbiol Immunol 2009;335:1-32
-
(2009)
Curr Top Microbiol Immunol
, vol.335
, pp. 1-32
-
-
Yang, Z.1
Klionsky, D.J.2
-
77
-
-
0032895859
-
Glucose-induced microautophagy of peroxysomes in Pichia pastoris requires a unique E1-like protein
-
Yuan W, Stromhaug PE, Dunn WA Jr. Glucose-induced microautophagy of peroxysomes in Pichia pastoris requires a unique E1-like protein. Mol Biol Cell 1999;10:1353-66
-
(1999)
Mol Biol Cell
, vol.10
, pp. 1353-1366
-
-
Yuan, W.1
Stromhaug, P.E.2
Dunn Jr., W.A.3
-
78
-
-
0037194894
-
A novel protein complex linking the delta 2 glutamate receptor and autophagy: Implications for neurodegeneration in lurcher mice
-
Yue Z, Horton A, Bravin M, DeJager PL, Selimi F, Heintz N. A novel protein complex linking the delta 2 glutamate receptor and autophagy: implications for neurodegeneration in lurcher mice. Neuron 2002;35:921-33
-
(2002)
Neuron
, vol.35
, pp. 921-933
-
-
Yue, Z.1
Horton, A.2
Bravin, M.3
Dejager, P.L.4
Selimi, F.5
Heintz, N.6
-
79
-
-
75149171923
-
Control of basal autophagy by calpain1 mediated cleavage of ATG5
-
Xia HG, Zhang L, Chen G, Zhang T, Liu J, Jin M, Ma X, Ma D, Yuan J. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy 2010;6:61-6
-
(2010)
Autophagy
, vol.6
, pp. 61-66
-
-
Xia, H.G.1
Zhang, L.2
Chen, G.3
Zhang, T.4
Liu, J.5
Jin, M.6
Ma, X.7
Ma, D.8
Yuan, J.9
-
80
-
-
34848886914
-
Autophagosome formation: Core machinery and adaptations
-
Xie Z, Klionsky DJ. Autophagosome formation: core machinery and adaptations. Nat Cell Biol 2007;9:1102-9
-
(2007)
Nat Cell Biol
, vol.9
, pp. 1102-1109
-
-
Xie, Z.1
Klionsky, D.J.2
-
81
-
-
32244442749
-
Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking
-
Zeng X, Overmeyer JH, Maltese WA. Functional specificity of the mammalian Beclin-Vps34 PI 3-kinase complex in macroautophagy versus endocytosis and lysosomal enzyme trafficking. J Cell Sci 2006;119:259-70
-
(2006)
J Cell Sci
, vol.119
, pp. 259-270
-
-
Zeng, X.1
Overmeyer, J.H.2
Maltese, W.A.3
-
82
-
-
37649024076
-
Small molecule regulators of autophagy identified by an image-based high-throughput screen
-
Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W, Zhu H, Yu AD, Xie X, Ma D. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci USA 2007;104:19023-8
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 19023-19028
-
-
Zhang, L.1
Yu, J.2
Pan, H.3
Hu, P.4
Hao, Y.5
Cai, W.6
Zhu, H.7
Yu, A.D.8
Xie, X.9
Ma, D.10
|