-
1
-
-
42449084129
-
Protein factors in pre-mRNA 3′-end processing
-
Mandel CR, Bai Y, Tong L. Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 2008, 65:1099-1122.
-
(2008)
Cell Mol Life Sci
, vol.65
, pp. 1099-1122
-
-
Mandel, C.R.1
Bai, Y.2
Tong, L.3
-
2
-
-
2342505693
-
New perspectives on connecting messenger RNA 3′ end formation to transcription
-
Proudfoot N. New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr Opin Cell Biol 2004, 16:272-278.
-
(2004)
Curr Opin Cell Biol
, vol.16
, pp. 272-278
-
-
Proudfoot, N.1
-
3
-
-
0036364652
-
A history of poly A sequences: from formation to factors to function
-
Edmonds M. A history of poly A sequences: from formation to factors to function. Prog Nucleic Acid Res Mol Biol 2002, 71:285-389.
-
(2002)
Prog Nucleic Acid Res Mol Biol
, vol.71
, pp. 285-389
-
-
Edmonds, M.1
-
4
-
-
0033059981
-
Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis
-
Zhao J, Hyman L, Moore C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999, 63:405-445.
-
(1999)
Microbiol Mol Biol Rev
, vol.63
, pp. 405-445
-
-
Zhao, J.1
Hyman, L.2
Moore, C.3
-
5
-
-
38949111543
-
3′ end mRNA processing: molecular mechanisms and implications for health and disease
-
Danckwardt S, Hentze MW, Kulozik AE. 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 2008, 27:482-498.
-
(2008)
EMBO J
, vol.27
, pp. 482-498
-
-
Danckwardt, S.1
Hentze, M.W.2
Kulozik, A.E.3
-
6
-
-
0008146244
-
3′-End processing of pre-mRNA in eukaryotes
-
Wahle E, Ruegsegger U. 3′-End processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev 1999, 23:277-295.
-
(1999)
FEMS Microbiol Rev
, vol.23
, pp. 277-295
-
-
Wahle, E.1
Ruegsegger, U.2
-
7
-
-
0032826096
-
Formation of the 3′ end of histone mRNA
-
Dominski Z, Marzluff WF. Formation of the 3′ end of histone mRNA. Gene 1999, 239:1-14.
-
(1999)
Gene
, vol.239
, pp. 1-14
-
-
Dominski, Z.1
Marzluff, W.F.2
-
8
-
-
0037164730
-
Polyadenylation: a tail of two complexes
-
Proudfoot N, O'Sullivan J. Polyadenylation: a tail of two complexes. Curr Biol 2002, 12:R855-R857.
-
(2002)
Curr Biol
, vol.12
-
-
Proudfoot, N.1
O'Sullivan, J.2
-
9
-
-
59649122202
-
Molecular architecture of the human pre-mRNA 3′ processing complex
-
3rd
-
Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR 3rd, Frank J, Manley JL. Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 2009, 33:365-376.
-
(2009)
Mol Cell
, vol.33
, pp. 365-376
-
-
Shi, Y.1
Di Giammartino, D.C.2
Taylor, D.3
Sarkeshik, A.4
Rice, W.J.5
Yates, J.R.6
Frank, J.7
Manley, J.L.8
-
10
-
-
60149110358
-
Pre-mRNA processing reaches back to transcription and ahead to translation
-
Moore MJ, Proudfoot NJ. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 2009, 136:688-700.
-
(2009)
Cell
, vol.136
, pp. 688-700
-
-
Moore, M.J.1
Proudfoot, N.J.2
-
11
-
-
77953284100
-
Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation
-
Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 2010, 38:2757-2774.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 2757-2774
-
-
Millevoi, S.1
Vagner, S.2
-
12
-
-
58149144383
-
Alternative polyadenylation: a twist on mRNA 3′ end formation
-
Lutz CS. Alternative polyadenylation: a twist on mRNA 3′ end formation. ACS Chem Biol 2008, 3:609-617.
-
(2008)
ACS Chem Biol
, vol.3
, pp. 609-617
-
-
Lutz, C.S.1
-
13
-
-
51149105080
-
Messenger RNA 3′ end formation in plants
-
Hunt AG. Messenger RNA 3′ end formation in plants. Curr Top Microbiol Immunol 2008, 326:151-177.
-
(2008)
Curr Top Microbiol Immunol
, vol.326
, pp. 151-177
-
-
Hunt, A.G.1
-
14
-
-
66049104920
-
Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development
-
Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A 2009, 106:7028-7033.
-
(2009)
Proc Natl Acad Sci U S A
, vol.106
, pp. 7028-7033
-
-
Ji, Z.1
Lee, J.Y.2
Pan, Z.3
Jiang, B.4
Tian, B.5
-
15
-
-
13744254695
-
A large-scale analysis of mRNA polyadenylation of human and mouse genes
-
Tian B, Hu J, Zhang H, Lutz CS. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 2005, 33:201-212.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 201-212
-
-
Tian, B.1
Hu, J.2
Zhang, H.3
Lutz, C.S.4
-
16
-
-
77950587742
-
An up-close look at the pre-mRNA 3′-end processing complex
-
Shi Y, Chan S, Martinez-Santibanez G. An up-close look at the pre-mRNA 3′-end processing complex. RNA Biol 2009, 6:522-525.
-
(2009)
RNA Biol
, vol.6
, pp. 522-525
-
-
Shi, Y.1
Chan, S.2
Martinez-Santibanez, G.3
-
17
-
-
27644485122
-
Eukaryotic mRNA 3′ processing: a common means to different ends
-
Gilmartin GM. Eukaryotic mRNA 3′ processing: a common means to different ends. Genes Dev 2005, 19:2517-2521.
-
(2005)
Genes Dev
, vol.19
, pp. 2517-2521
-
-
Gilmartin, G.M.1
-
18
-
-
84857772692
-
Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression
-
Lutz CS, Moreira A. Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. WIREs RNA 2011, 2:22-31.
-
(2011)
WIREs RNA
, vol.2
, pp. 22-31
-
-
Lutz, C.S.1
Moreira, A.2
-
19
-
-
84857761249
-
Pre-mRNA 3′-end processing complex assembly and function
-
Chan S, Choi E-A, Shi Y. Pre-mRNA 3′-end processing complex assembly and function. WIRES RNA 2011, 3:321-335.
-
(2011)
WIRES RNA
, vol.3
, pp. 321-335
-
-
Chan, S.1
Choi, E.-A.2
Shi, Y.3
-
20
-
-
1442313922
-
Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase
-
Kaufmann I, Martin G, Friedlein A, Langen H, Keller W. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 2004, 23:616-626.
-
(2004)
EMBO J
, vol.23
, pp. 616-626
-
-
Kaufmann, I.1
Martin, G.2
Friedlein, A.3
Langen, H.4
Keller, W.5
-
21
-
-
0031610366
-
Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits
-
Rüegsegger U, Blank D, Keller W. Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Mol Cell 1998, 1:243-253.
-
(1998)
Mol Cell
, vol.1
, pp. 243-253
-
-
Rüegsegger, U.1
Blank, D.2
Keller, W.3
-
22
-
-
1842329727
-
The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins
-
Barabino SM, Hubner W, Jenny A, Minvielle-Sebastia L, Keller W. The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes Dev 1997, 11:1703-1716.
-
(1997)
Genes Dev
, vol.11
, pp. 1703-1716
-
-
Barabino, S.M.1
Hubner, W.2
Jenny, A.3
Minvielle-Sebastia, L.4
Keller, W.5
-
23
-
-
0029991323
-
Purification and characterization of human cleavage factor Im involved in the 3′ end processing of messenger RNA precursors.
-
Rüegsegger U, Beyer K, Keller W. Purification and characterization of human cleavage factor Im involved in the 3′ end processing of messenger RNA precursors. J Biol Chem 1996, 271:6107-6113.
-
(1996)
J Biol Chem
, vol.271
, pp. 6107-6113
-
-
Rüegsegger, U.1
Beyer, K.2
Keller, W.3
-
24
-
-
0029910068
-
Purification of the Saccharomyces cerevisiae cleavage/polyadenylation factor I. Separation into two components that are required for both cleavage and polyadenylation of mRNA 3′ ends.
-
Kessler MM, Zhao J, Moore CL. Purification of the Saccharomyces cerevisiae cleavage/polyadenylation factor I. Separation into two components that are required for both cleavage and polyadenylation of mRNA 3′ ends. J Biol Chem 1996, 271:27167-27175.
-
(1996)
J Biol Chem
, vol.271
, pp. 27167-27175
-
-
Kessler, M.M.1
Zhao, J.2
Moore, C.L.3
-
25
-
-
0028789410
-
The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation
-
Murthy KG, Manley JL. The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation. Genes Dev 1995, 9:2672-2683.
-
(1995)
Genes Dev
, vol.9
, pp. 2672-2683
-
-
Murthy, K.G.1
Manley, J.L.2
-
26
-
-
0028589505
-
RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3′-end processing factor
-
Minvielle-Sebastia L, Preker PJ, Keller W. RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3′-end processing factor. Science 1994, 266:1702-1705.
-
(1994)
Science
, vol.266
, pp. 1702-1705
-
-
Minvielle-Sebastia, L.1
Preker, P.J.2
Keller, W.3
-
27
-
-
0028025647
-
The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location
-
MacDonald CC, Wilusz J, Shenk T. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol 1994, 14:6647-6654.
-
(1994)
Mol Cell Biol
, vol.14
, pp. 6647-6654
-
-
MacDonald, C.C.1
Wilusz, J.2
Shenk, T.3
-
28
-
-
45549083224
-
Crystal structure of the 25 kDa subunit of human cleavage factor Im
-
Coseno M, Martin G, Berger C, Gilmartin G, Keller W, Doublié S. Crystal structure of the 25 kDa subunit of human cleavage factor Im. Nucleic Acids Res 2008, 36:3474-3483.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 3474-3483
-
-
Coseno, M.1
Martin, G.2
Berger, C.3
Gilmartin, G.4
Keller, W.5
Doublié, S.6
-
29
-
-
58149311440
-
The crystal structure of human cleavage and polyadenylation specific factor-5 reveals a dimeric Nudix protein with a conserved catalytic site
-
Tresaugues L, Stenmark P, Schuler H, Flodin S, Welin M, Nyman T, Hammarstrom M, Moche M, Graslund S, Nordlund P. The crystal structure of human cleavage and polyadenylation specific factor-5 reveals a dimeric Nudix protein with a conserved catalytic site. Proteins 2008, 73:1047-1052.
-
(2008)
Proteins
, vol.73
, pp. 1047-1052
-
-
Tresaugues, L.1
Stenmark, P.2
Schuler, H.3
Flodin, S.4
Welin, M.5
Nyman, T.6
Hammarstrom, M.7
Moche, M.8
Graslund, S.9
Nordlund, P.10
-
30
-
-
33845902048
-
Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease
-
Mandel CR, Kaneko S, Zhang H, Gebauer D, Vethantham V, Manley JL, Tong L. Polyadenylation factor CPSF-73 is the pre-mRNA 3′-end-processing endonuclease. Nature 2006, 444:953-956.
-
(2006)
Nature
, vol.444
, pp. 953-956
-
-
Mandel, C.R.1
Kaneko, S.2
Zhang, H.3
Gebauer, D.4
Vethantham, V.5
Manley, J.L.6
Tong, L.7
-
31
-
-
77955794351
-
Crystal structure of an archaeal cleavage and polyadenylation specificity factor subunit from Pyrococcus horikoshii
-
Nishida Y, Ishikawa H, Baba S, Nakagawa N, Kuramitsu S, Masui R. Crystal structure of an archaeal cleavage and polyadenylation specificity factor subunit from Pyrococcus horikoshii. Proteins 2010, 78:2395-2398.
-
(2010)
Proteins
, vol.78
, pp. 2395-2398
-
-
Nishida, Y.1
Ishikawa, H.2
Baba, S.3
Nakagawa, N.4
Kuramitsu, S.5
Masui, R.6
-
32
-
-
78649905057
-
Crystal structure of a dimeric archaeal cleavage and polyadenylation specificity factor
-
Mir-Montazeri B, Ammelburg M, Forouzan D, Lupas AN, Hartmann MD. Crystal structure of a dimeric archaeal cleavage and polyadenylation specificity factor. J Struct Biol 2011, 173:191-195.
-
(2011)
J Struct Biol
, vol.173
, pp. 191-195
-
-
Mir-Montazeri, B.1
Ammelburg, M.2
Forouzan, D.3
Lupas, A.N.4
Hartmann, M.D.5
-
33
-
-
0037507248
-
Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein
-
Perez Canadillas JM, Varani G. Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein. EMBO J 2003, 22:2821-2830.
-
(2003)
EMBO J
, vol.22
, pp. 2821-2830
-
-
Perez Canadillas, J.M.1
Varani, G.2
-
34
-
-
77953261028
-
Structure of the Rna15 RRM-RNA complex reveals the molecular basis of GU specificity in transcriptional 3′-end processing factors
-
Pancevac C, Goldstone DC, Ramos A, Taylor IA. Structure of the Rna15 RRM-RNA complex reveals the molecular basis of GU specificity in transcriptional 3′-end processing factors. Nucleic Acids Res 2010, 38:3119-3132.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 3119-3132
-
-
Pancevac, C.1
Goldstone, D.C.2
Ramos, A.3
Taylor, I.A.4
-
35
-
-
33847327963
-
The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3′-end processing
-
Qu X, Perez-Canadillas JM, Agrawal S, De Baecke J, Cheng H, Varani G, Moore C. The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3′-end processing. J Biol Chem 2007, 282:2101-2115.
-
(2007)
J Biol Chem
, vol.282
, pp. 2101-2115
-
-
Qu, X.1
Perez-Canadillas, J.M.2
Agrawal, S.3
De Baecke, J.4
Cheng, H.5
Varani, G.6
Moore, C.7
-
36
-
-
34547839747
-
The structure of the CstF-77 homodimer provides insights into CstF assembly
-
Legrand P, Pinaud N, Minvielle-Sebastia L, Fribourg S. The structure of the CstF-77 homodimer provides insights into CstF assembly. Nucleic Acids Res 2007, 35:4515-4522.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 4515-4522
-
-
Legrand, P.1
Pinaud, N.2
Minvielle-Sebastia, L.3
Fribourg, S.4
-
37
-
-
33947202065
-
Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors
-
Bai Y, Auperin TC, Chou CY, Chang GG, Manley JL, Tong L. Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors. Mol Cell 2007, 25:863-875.
-
(2007)
Mol Cell
, vol.25
, pp. 863-875
-
-
Bai, Y.1
Auperin, T.C.2
Chou, C.Y.3
Chang, G.G.4
Manley, J.L.5
Tong, L.6
-
38
-
-
79951536375
-
Hexameric architecture of CstF supported by CstF-50 homodimerization domain structure
-
Moreno-Morcillo M, Minvielle-Sebastia L, Mackereth C, Fribourg S. Hexameric architecture of CstF supported by CstF-50 homodimerization domain structure. RNA 2011, 17:412-418.
-
(2011)
RNA
, vol.17
, pp. 412-418
-
-
Moreno-Morcillo, M.1
Minvielle-Sebastia, L.2
Mackereth, C.3
Fribourg, S.4
-
39
-
-
68949196300
-
Crystal structure of the HEAT domain from the Pre-mRNA processing factor Symplekin
-
Kennedy SA, Frazier ML, Steiniger M, Mast AM, Marzluff WF, Redinbo MR. Crystal structure of the HEAT domain from the Pre-mRNA processing factor Symplekin. J Mol Biol 2009, 392:115-128.
-
(2009)
J Mol Biol
, vol.392
, pp. 115-128
-
-
Kennedy, S.A.1
Frazier, M.L.2
Steiniger, M.3
Mast, A.M.4
Marzluff, W.F.5
Redinbo, M.R.6
-
40
-
-
15544376116
-
Key features of the interaction between Pcf11 CID and RNA polymerase II CTD
-
Noble CG, Hollingworth D, Martin SR, Ennis-Adeniran V, Smerdon SJ, Kelly G, Taylor IA, Ramos A. Key features of the interaction between Pcf11 CID and RNA polymerase II CTD. Nat Struct Mol Biol 2005, 12:144-151.
-
(2005)
Nat Struct Mol Biol
, vol.12
, pp. 144-151
-
-
Noble, C.G.1
Hollingworth, D.2
Martin, S.R.3
Ennis-Adeniran, V.4
Smerdon, S.J.5
Kelly, G.6
Taylor, I.A.7
Ramos, A.8
-
41
-
-
3142615882
-
Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors
-
Meinhart A, Cramer P. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 2004, 430:223-226.
-
(2004)
Nature
, vol.430
, pp. 223-226
-
-
Meinhart, A.1
Cramer, P.2
-
42
-
-
0034664049
-
Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP
-
Martin G, Keller W, Doublié S. Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP. EMBO J 2000, 19:4193-4203.
-
(2000)
EMBO J
, vol.19
, pp. 4193-4203
-
-
Martin, G.1
Keller, W.2
Doublié, S.3
-
43
-
-
3843067711
-
Biochemical and structural insights into substrate binding and catalytic mechanism of mammalian poly(A) polymerase
-
Martin G, Moglich A, Keller W, Doublié S. Biochemical and structural insights into substrate binding and catalytic mechanism of mammalian poly(A) polymerase. J Mol Biol 2004, 341:911-925.
-
(2004)
J Mol Biol
, vol.341
, pp. 911-925
-
-
Martin, G.1
Moglich, A.2
Keller, W.3
Doublié, S.4
-
44
-
-
0034714329
-
Structure of yeast poly(A) polymerase alone and in complex with 3′-dATP
-
Bard J, Zhelkovsky AM, Helmling S, Earnest TN, Moore CL, Bohm A. Structure of yeast poly(A) polymerase alone and in complex with 3′-dATP. Science 2000, 289:1346-1349.
-
(2000)
Science
, vol.289
, pp. 1346-1349
-
-
Bard, J.1
Zhelkovsky, A.M.2
Helmling, S.3
Earnest, T.N.4
Moore, C.L.5
Bohm, A.6
-
45
-
-
33846781442
-
X-ray crystallographic and steady state fluorescence characterization of the protein dynamics of yeast polyadenylate polymerase
-
Balbo PB, Toth J, Bohm A. X-ray crystallographic and steady state fluorescence characterization of the protein dynamics of yeast polyadenylate polymerase. J Mol Biol 2007, 366:1401-1415.
-
(2007)
J Mol Biol
, vol.366
, pp. 1401-1415
-
-
Balbo, P.B.1
Toth, J.2
Bohm, A.3
-
46
-
-
42449108672
-
Crystal structure and possible dimerization of the single RRM of human PABPN1
-
Ge H, Zhou D, Tong S, Gao Y, Teng M, Niu L. Crystal structure and possible dimerization of the single RRM of human PABPN1. Proteins 2008, 71:1539-1545.
-
(2008)
Proteins
, vol.71
, pp. 1539-1545
-
-
Ge, H.1
Zhou, D.2
Tong, S.3
Gao, Y.4
Teng, M.5
Niu, L.6
-
47
-
-
79952459288
-
Crystal structure of a human cleavage factor CFIm25/CFIm68/RNA complex provides an insight into poly(A) site recognition and rna looping.
-
Yang Q, Coseno M, Gilmartin GM, Doublié S. Crystal structure of a human cleavage factor CFIm25/CFIm68/RNA complex provides an insight into poly(A) site recognition and rna looping. Structure 2011, 19:368-377.
-
(2011)
Structure
, vol.19
, pp. 368-377
-
-
Yang, Q.1
Coseno, M.2
Gilmartin, G.M.3
Doublié, S.4
-
48
-
-
51349124912
-
Structural basis for suppression of a host antiviral response by influenza A virus
-
Das K, Ma LC, Xiao R, Radvansky B, Aramini J, Zhao L, Marklund J, Kuo RL, Twu KY, Arnold E, et al. Structural basis for suppression of a host antiviral response by influenza A virus. Proc Natl Acad Sci U S A 2008, 105:13093-13098.
-
(2008)
Proc Natl Acad Sci U S A
, vol.105
, pp. 13093-13098
-
-
Das, K.1
Ma, L.C.2
Xiao, R.3
Radvansky, B.4
Aramini, J.5
Zhao, L.6
Marklund, J.7
Kuo, R.L.8
Twu, K.Y.9
Arnold, E.10
-
49
-
-
33846688769
-
Structure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor.
-
Noble CG, Beuth B, Taylor IA. Structure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor. Nucleic Acids Res 2007, 35:87-99.
-
(2007)
Nucleic Acids Res
, vol.35
, pp. 87-99
-
-
Noble, C.G.1
Beuth, B.2
Taylor, I.A.3
-
50
-
-
46049095239
-
Structure of yeast poly(A) polymerase in complex with a peptide from Fip1, an intrinsically disordered protein
-
Meinke G, Ezeokonkwo C, Balbo P, Stafford W, Moore C, Bohm A. Structure of yeast poly(A) polymerase in complex with a peptide from Fip1, an intrinsically disordered protein. Biochemistry 2008, 47:6859-6869.
-
(2008)
Biochemistry
, vol.47
, pp. 6859-6869
-
-
Meinke, G.1
Ezeokonkwo, C.2
Balbo, P.3
Stafford, W.4
Moore, C.5
Bohm, A.6
-
51
-
-
77958018260
-
Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex
-
Xiang K, Nagaike T, Xiang S, Kilic T, Beh MM, Manley JL, Tong L. Crystal structure of the human symplekin-Ssu72-CTD phosphopeptide complex. Nature 2010, 467: 729-733.
-
(2010)
Nature
, vol.467
, pp. 729-733
-
-
Xiang, K.1
Nagaike, T.2
Xiang, S.3
Kilic, T.4
Beh, M.M.5
Manley, J.L.6
Tong, L.7
-
52
-
-
77953454014
-
Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3′ processing
-
Yang Q, Gilmartin GM, Doublié S. Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3′ processing. Proc Natl Acad Sci U S A 2010, 107:10062-10067.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 10062-10067
-
-
Yang, Q.1
Gilmartin, G.M.2
Doublié, S.3
-
53
-
-
33746296753
-
Grabbing the message: structural basis of mRNA 3′UTR recognition by Hrp1
-
Perez-Canadillas JM. Grabbing the message: structural basis of mRNA 3′UTR recognition by Hrp1. EMBO J 2006, 25:3167-3178.
-
(2006)
EMBO J
, vol.25
, pp. 3167-3178
-
-
Perez-Canadillas, J.M.1
-
54
-
-
77955273066
-
Novel protein-protein contacts facilitate mRNA 3′-processing signal recognition by Rna15 and Hrp1
-
Leeper TC, Qu X, Lu C, Moore C, Varani G. Novel protein-protein contacts facilitate mRNA 3′-processing signal recognition by Rna15 and Hrp1. J Mol Biol 2010, 401:334-349.
-
(2010)
J Mol Biol
, vol.401
, pp. 334-349
-
-
Leeper, T.C.1
Qu, X.2
Lu, C.3
Moore, C.4
Varani, G.5
-
55
-
-
34548382114
-
Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis
-
Balbo PB, Bohm A. Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis. Structure 2007, 15: 1117-1131.
-
(2007)
Structure
, vol.15
, pp. 1117-1131
-
-
Balbo, P.B.1
Bohm, A.2
-
56
-
-
0033578927
-
Recognition of polyadenylate RNA by the poly(A)-binding protein
-
Deo RC, Bonanno JB, Sonenberg N, Burley SK. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 1999, 98:835-845.
-
(1999)
Cell
, vol.98
, pp. 835-845
-
-
Deo, R.C.1
Bonanno, J.B.2
Sonenberg, N.3
Burley, S.K.4
-
57
-
-
22344439263
-
Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition
-
Venkataraman K, Brown KM, Gilmartin GM. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 2005, 19:1315-1327.
-
(2005)
Genes Dev
, vol.19
, pp. 1315-1327
-
-
Venkataraman, K.1
Brown, K.M.2
Gilmartin, G.M.3
-
58
-
-
0017089669
-
3′ non-coding region sequences in eukaryotic messenger RNA
-
Proudfoot NJ, Brownlee GG. 3′ non-coding region sequences in eukaryotic messenger RNA. Nature 1976, 263:211-214.
-
(1976)
Nature
, vol.263
, pp. 211-214
-
-
Proudfoot, N.J.1
Brownlee, G.G.2
-
59
-
-
0033858202
-
Patterns of variant polyadenylation signal usage in human genes
-
Beaudoing E, Freier S, Wyatt JR, Claverie JM, Gautheret D. Patterns of variant polyadenylation signal usage in human genes. Genome Res 2000, 10:1001-1010.
-
(2000)
Genome Res
, vol.10
, pp. 1001-1010
-
-
Beaudoing, E.1
Freier, S.2
Wyatt, J.R.3
Claverie, J.M.4
Gautheret, D.5
-
60
-
-
25844497003
-
Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation
-
Hu J, Lutz CS, Wilusz J, Tian B. Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation. RNA 2005, 11:1485-1493.
-
(2005)
RNA
, vol.11
, pp. 1485-1493
-
-
Hu, J.1
Lutz, C.S.2
Wilusz, J.3
Tian, B.4
-
61
-
-
44349130371
-
Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation
-
Shen Y, Ji G, Haas BJ, Wu X, Zheng J, Reese GJ, Li QQ. Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation. Nucleic Acids Res 2008, 36:3150-3161.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 3150-3161
-
-
Shen, Y.1
Ji, G.2
Haas, B.J.3
Wu, X.4
Zheng, J.5
Reese, G.J.6
Li, Q.Q.7
-
62
-
-
0019472442
-
The sequence 5′-AAUAAA-3′ forms parts of the recognition site for polyadenylation of late SV40 mRNAs
-
Fitzgerald M, Shenk T. The sequence 5′-AAUAAA-3′ forms parts of the recognition site for polyadenylation of late SV40 mRNAs. Cell 1981, 24:251-260.
-
(1981)
Cell
, vol.24
, pp. 251-260
-
-
Fitzgerald, M.1
Shenk, T.2
-
63
-
-
33747353311
-
A multispecies comparison of the metazoan 3′-processing downstream elements and the CstF-64 RNA recognition motif
-
Salisbury J, Hutchison KW, Graber JH. A multispecies comparison of the metazoan 3′-processing downstream elements and the CstF-64 RNA recognition motif. BMC Genomics 2006, 7:55.
-
(2006)
BMC Genomics
, vol.7
, pp. 55
-
-
Salisbury, J.1
Hutchison, K.W.2
Graber, J.H.3
-
64
-
-
0033081347
-
Genomic detection of new yeast pre-mRNA 3′-end-processing signals
-
Graber JH, Cantor CR, Mohr SC, Smith TF. Genomic detection of new yeast pre-mRNA 3′-end-processing signals. Nucleic Acids Res 1999, 27:888-894.
-
(1999)
Nucleic Acids Res
, vol.27
, pp. 888-894
-
-
Graber, J.H.1
Cantor, C.R.2
Mohr, S.C.3
Smith, T.F.4
-
65
-
-
0030803670
-
Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3′-end formation in yeast
-
Kessler MM, Henry MF, Shen E, Zhao J, Gross S, Silver PA, Moore CL. Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3′-end formation in yeast. Genes Dev 1997, 11:2545-2556.
-
(1997)
Genes Dev
, vol.11
, pp. 2545-2556
-
-
Kessler, M.M.1
Henry, M.F.2
Shen, E.3
Zhao, J.4
Gross, S.5
Silver, P.A.6
Moore, C.L.7
-
66
-
-
0035876112
-
Recognition of polyadenylation sites in yeast pre-mRNAs by cleavage and polyadenylation factor
-
Dichtl B, Keller W. Recognition of polyadenylation sites in yeast pre-mRNAs by cleavage and polyadenylation factor. EMBO J 2001, 20:3197-3209.
-
(2001)
EMBO J
, vol.20
, pp. 3197-3209
-
-
Dichtl, B.1
Keller, W.2
-
67
-
-
79952484876
-
mRNA 3′ end processing and more-multiple functions of mammalian cleavage factor I-68
-
Ruepp MD, Schümperli D, Barabino SML. mRNA 3′ end processing and more-multiple functions of mammalian cleavage factor I-68. WIREs RNA 2011, 2:79-91.
-
(2011)
WIREs RNA
, vol.2
, pp. 79-91
-
-
Ruepp, M.D.1
Schümperli, D.2
Barabino, S.M.L.3
-
68
-
-
0024284107
-
Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation
-
Takagaki Y, Ryner LC, Manley JL. Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell 1988, 52:731-742.
-
(1988)
Cell
, vol.52
, pp. 731-742
-
-
Takagaki, Y.1
Ryner, L.C.2
Manley, J.L.3
-
69
-
-
0347416974
-
A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im
-
Brown KM, Gilmartin GM. A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im. Mol Cell 2003, 12:1467-1476.
-
(2003)
Mol Cell
, vol.12
, pp. 1467-1476
-
-
Brown, K.M.1
Gilmartin, G.M.2
-
70
-
-
4143151952
-
Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization
-
Dettwiler S, Aringhieri C, Cardinale S, Keller W, Barabino SM. Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. J Biol Chem 2004, 279:35788-35797.
-
(2004)
J Biol Chem
, vol.279
, pp. 35788-35797
-
-
Dettwiler, S.1
Aringhieri, C.2
Cardinale, S.3
Keller, W.4
Barabino, S.M.5
-
71
-
-
30744470374
-
The Nudix hydrolase superfamily
-
McLennan AG. The Nudix hydrolase superfamily. Cell Mol Life Sci 2006, 63:123-143.
-
(2006)
Cell Mol Life Sci
, vol.63
, pp. 123-143
-
-
McLennan, A.G.1
-
72
-
-
9744224380
-
Structures and mechanisms of Nudix hydrolases
-
Mildvan AS, Xia Z, Azurmendi HF, Saraswat V, Legler PM, Massiah MA, Gabelli SB, Bianchet MA, Kang LW, Amzel LM. Structures and mechanisms of Nudix hydrolases. Arch Biochem Biophys 2005, 433:129-143.
-
(2005)
Arch Biochem Biophys
, vol.433
, pp. 129-143
-
-
Mildvan, A.S.1
Xia, Z.2
Azurmendi, H.F.3
Saraswat, V.4
Legler, P.M.5
Massiah, M.A.6
Gabelli, S.B.7
Bianchet, M.A.8
Kang, L.W.9
Amzel, L.M.10
-
73
-
-
30444446153
-
Molecular basis of RNA recognition by the human alternative splicing factor Fox-1
-
Auweter SD, Fasan R, Reymond L, Underwood JG, Black DL, Pitsch S, Allain FH. Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO J 2006, 25:163-173.
-
(2006)
EMBO J
, vol.25
, pp. 163-173
-
-
Auweter, S.D.1
Fasan, R.2
Reymond, L.3
Underwood, J.G.4
Black, D.L.5
Pitsch, S.6
Allain, F.H.7
-
74
-
-
0035976721
-
Interaction of poly(A) polymerase with the 25-kDa subunit of cleavage factor I
-
Kim H, Lee Y. Interaction of poly(A) polymerase with the 25-kDa subunit of cleavage factor I. Biochem Biophys Res Commun 2001, 289:513-518.
-
(2001)
Biochem Biophys Res Commun
, vol.289
, pp. 513-518
-
-
Kim, H.1
Lee, Y.2
-
75
-
-
33947514003
-
Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing
-
Shimazu T, Horinouchi S, Yoshida M. Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing. J Biol Chem 2007, 282:4470-4478.
-
(2007)
J Biol Chem
, vol.282
, pp. 4470-4478
-
-
Shimazu, T.1
Horinouchi, S.2
Yoshida, M.3
-
76
-
-
0033835333
-
Sorting out the complexity of SR protein functions
-
Graveley BR. Sorting out the complexity of SR protein functions. RNA 2000, 6:1197-1211.
-
(2000)
RNA
, vol.6
, pp. 1197-1211
-
-
Graveley, B.R.1
-
77
-
-
33750200773
-
An interaction between U2AF 65 and CF I(m) links the splicing and 3′ end processing machineries
-
Millevoi S, Loulergue C, Dettwiler S, Karaa SZ, Keller W, Antoniou M, Vagner S. An interaction between U2AF 65 and CF I(m) links the splicing and 3′ end processing machineries. EMBO J 2006, 25:4854-4864.
-
(2006)
EMBO J
, vol.25
, pp. 4854-4864
-
-
Millevoi, S.1
Loulergue, C.2
Dettwiler, S.3
Karaa, S.Z.4
Keller, W.5
Antoniou, M.6
Vagner, S.7
-
78
-
-
0142209394
-
Association of polyadenylation cleavage factor I with U1 snRNP
-
Awasthi S, Alwine JC. Association of polyadenylation cleavage factor I with U1 snRNP. RNA 2003, 9:1400-1409.
-
(2003)
RNA
, vol.9
, pp. 1400-1409
-
-
Awasthi, S.1
Alwine, J.C.2
-
79
-
-
0036674269
-
Large-scale proteomic analysis of the human spliceosome
-
Rappsilber J, Ryder U, Lamond AI, Mann M. Large-scale proteomic analysis of the human spliceosome. Genome Res 2002, 12:1231-1245.
-
(2002)
Genome Res
, vol.12
, pp. 1231-1245
-
-
Rappsilber, J.1
Ryder, U.2
Lamond, A.I.3
Mann, M.4
-
80
-
-
0037126061
-
Purification and electron microscopic visualization of functional human spliceosomes
-
Zhou Z, Sim J, Griffith J, Reed R. Purification and electron microscopic visualization of functional human spliceosomes. Proc Natl Acad Sci U S A 2002, 99:12203-12207.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 12203-12207
-
-
Zhou, Z.1
Sim, J.2
Griffith, J.3
Reed, R.4
-
82
-
-
33845675377
-
Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3′-UTRs
-
Kubo T, Wada T, Yamaguchi Y, Shimizu A, Handa H. Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3′-UTRs. Nucleic Acids Res 2006, 34:6264-6271.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 6264-6271
-
-
Kubo, T.1
Wada, T.2
Yamaguchi, Y.3
Shimizu, A.4
Handa, H.5
-
83
-
-
40949131742
-
Pre-messenger RNA cleavage factor I (CFIm): potential role in alternative polyadenylation during spermatogenesis
-
Sartini BL, Wang H, Wang W, Millette CF, Kilpatrick DL. Pre-messenger RNA cleavage factor I (CFIm): potential role in alternative polyadenylation during spermatogenesis. Biol Reprod 2008, 78:472-482.
-
(2008)
Biol Reprod
, vol.78
, pp. 472-482
-
-
Sartini, B.L.1
Wang, H.2
Wang, W.3
Millette, C.F.4
Kilpatrick, D.L.5
-
84
-
-
73849115741
-
Mammalian pre-mRNA 3′ end processing factor CF I m 68 functions in mRNA export
-
Ruepp MD, Aringhieri C, Vivarelli S, Cardinale S, Paro S, Schumperli D, Barabino SM. Mammalian pre-mRNA 3′ end processing factor CF I m 68 functions in mRNA export. Mol Biol Cell 2009, 20:5211-5223.
-
(2009)
Mol Biol Cell
, vol.20
, pp. 5211-5223
-
-
Ruepp, M.D.1
Aringhieri, C.2
Vivarelli, S.3
Cardinale, S.4
Paro, S.5
Schumperli, D.6
Barabino, S.M.7
-
85
-
-
65549149976
-
A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs
-
Sullivan KD, Steiniger M, Marzluff WF. A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs. Mol Cell 2009, 34:322-332.
-
(2009)
Mol Cell
, vol.34
, pp. 322-332
-
-
Sullivan, K.D.1
Steiniger, M.2
Marzluff, W.F.3
-
86
-
-
1642488290
-
Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease
-
Ryan K, Calvo O, Manley JL. Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. RNA 2004, 10:565-573.
-
(2004)
RNA
, vol.10
, pp. 565-573
-
-
Ryan, K.1
Calvo, O.2
Manley, J.L.3
-
87
-
-
0037102538
-
Metallo-β-lactamase fold within nucleic acids processing enzymes: the β-CASP family
-
Callebaut I, Moshous D, Mornon JP, de Villartay JP. Metallo-β-lactamase fold within nucleic acids processing enzymes: the β-CASP family. Nucleic Acids Res 2002, 30:3592-3601.
-
(2002)
Nucleic Acids Res
, vol.30
, pp. 3592-3601
-
-
Callebaut, I.1
Moshous, D.2
Mornon, J.P.3
de Villartay, J.P.4
-
88
-
-
0030788541
-
Extracting protein alignment models from the sequence database
-
Neuwald AF, Liu JS, Lipman DJ, Lawrence CE. Extracting protein alignment models from the sequence database. Nucleic Acids Res 1997, 25: 1665-1677.
-
(1997)
Nucleic Acids Res
, vol.25
, pp. 1665-1677
-
-
Neuwald, A.F.1
Liu, J.S.2
Lipman, D.J.3
Lawrence, C.E.4
-
89
-
-
34247157802
-
Nucleases of the metallo-β-lactamase family and their role in DNA and RNA metabolism
-
Dominski Z. Nucleases of the metallo-β-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol 2007, 42:67-93.
-
(2007)
Crit Rev Biochem Mol Biol
, vol.42
, pp. 67-93
-
-
Dominski, Z.1
-
90
-
-
33845286132
-
Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-β-lactamase superfamily
-
Ishikawa H, Nakagawa N, Kuramitsu S, Masui R. Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-β-lactamase superfamily. J Biochem 2006, 140:535-542.
-
(2006)
J Biochem
, vol.140
, pp. 535-542
-
-
Ishikawa, H.1
Nakagawa, N.2
Kuramitsu, S.3
Masui, R.4
-
91
-
-
38849144533
-
Structural insights into the dual activity of RNase J
-
de la Sierra-Gallay IL, Zig L, Jamalli A, Putzer H. Structural insights into the dual activity of RNase J. Nat Struct Mol Biol 2008, 15:206-212.
-
(2008)
Nat Struct Mol Biol
, vol.15
, pp. 206-212
-
-
de la Sierra-Gallay, I.L.1
Zig, L.2
Jamalli, A.3
Putzer, H.4
-
92
-
-
34948859355
-
Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily
-
Bebrone C. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007, 74:1686-1701.
-
(2007)
Biochem Pharmacol
, vol.74
, pp. 1686-1701
-
-
Bebrone, C.1
-
93
-
-
53249132654
-
Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′-end maturation
-
Kolev NG, Yario TA, Benson E, Steitz JA. Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′-end maturation. EMBO Rep 2008, 9:1013-1018.
-
(2008)
EMBO Rep
, vol.9
, pp. 1013-1018
-
-
Kolev, N.G.1
Yario, T.A.2
Benson, E.3
Steitz, J.A.4
-
94
-
-
33750222859
-
Sequence-specific binding of single-stranded RNA: is there a code for recognition?
-
Auweter SD, Oberstrass FC, Allain FH. Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 2006, 34:4943-4959.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 4943-4959
-
-
Auweter, S.D.1
Oberstrass, F.C.2
Allain, F.H.3
-
95
-
-
59649110607
-
Nucleic acid polymerases use a general acid for nucleotidyl transfer
-
Castro C, Smidansky ED, Arnold JJ, Maksimchuk KR, Moustafa I, Uchida A, Gotte M, Konigsberg W, Cameron CE. Nucleic acid polymerases use a general acid for nucleotidyl transfer. Nat Struct Mol Biol 2009, 16:212-218.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 212-218
-
-
Castro, C.1
Smidansky, E.D.2
Arnold, J.J.3
Maksimchuk, K.R.4
Moustafa, I.5
Uchida, A.6
Gotte, M.7
Konigsberg, W.8
Cameron, C.E.9
-
96
-
-
0242380645
-
The role of the yeast cleavage and polyadenylation factor subunit Ydh1p/Cft2p in pre-mRNA 3′-end formation
-
Kyburz A, Sadowski M, Dichtl B, Keller W. The role of the yeast cleavage and polyadenylation factor subunit Ydh1p/Cft2p in pre-mRNA 3′-end formation. Nucleic Acids Res 2003, 31:3936-3945.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 3936-3945
-
-
Kyburz, A.1
Sadowski, M.2
Dichtl, B.3
Keller, W.4
-
97
-
-
33746722726
-
The 73 kD subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis
-
Xu R, Zhao H, Dinkins RD, Cheng X, Carberry G, Li QQ. The 73 kD subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis. Plant Mol Biol 2006, 61:799-815.
-
(2006)
Plant Mol Biol
, vol.61
, pp. 799-815
-
-
Xu, R.1
Zhao, H.2
Dinkins, R.D.3
Cheng, X.4
Carberry, G.5
Li, Q.Q.6
-
98
-
-
13444249745
-
A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100
-
Dominski Z, Yang XC, Purdy M, Wagner EJ, Marzluff WF. A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Mol Cell Biol 2005, 25:1489-1500.
-
(2005)
Mol Cell Biol
, vol.25
, pp. 1489-1500
-
-
Dominski, Z.1
Yang, X.C.2
Purdy, M.3
Wagner, E.J.4
Marzluff, W.F.5
-
99
-
-
58149460414
-
Studies of the 5′ exonuclease and endonuclease activities of CPSF-73 in histone pre-mRNA processing
-
Yang XC, Sullivan KD, Marzluff WF, Dominski Z. Studies of the 5′ exonuclease and endonuclease activities of CPSF-73 in histone pre-mRNA processing. Mol Cell Biol 2009, 29:31-42.
-
(2009)
Mol Cell Biol
, vol.29
, pp. 31-42
-
-
Yang, X.C.1
Sullivan, K.D.2
Marzluff, W.F.3
Dominski, Z.4
-
100
-
-
0024094282
-
Two proteins crosslinked to RNA containing the adenovirus L3 poly(A) site require the AAUAAA sequence for binding
-
Moore CL, Chen J, Whoriskey J. Two proteins crosslinked to RNA containing the adenovirus L3 poly(A) site require the AAUAAA sequence for binding. EMBO J 1988, 7:3159-3169.
-
(1988)
EMBO J
, vol.7
, pp. 3159-3169
-
-
Moore, C.L.1
Chen, J.2
Whoriskey, J.3
-
101
-
-
0036682601
-
Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination
-
Dichtl B, Blank D, Sadowski M, Hubner W, Weiser S, Keller W. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. EMBO J 2002, 21:4125-4135.
-
(2002)
EMBO J
, vol.21
, pp. 4125-4135
-
-
Dichtl, B.1
Blank, D.2
Sadowski, M.3
Hubner, W.4
Weiser, S.5
Keller, W.6
-
102
-
-
0034679803
-
Distinct roles of two Yth1p domains in 3′-end cleavage and polyadenylation of yeast pre-mRNAs
-
Barabino SM, Ohnacker M, Keller W. Distinct roles of two Yth1p domains in 3′-end cleavage and polyadenylation of yeast pre-mRNAs. EMBO J 2000, 19:3778-3787.
-
(2000)
EMBO J
, vol.19
, pp. 3778-3787
-
-
Barabino, S.M.1
Ohnacker, M.2
Keller, W.3
-
103
-
-
0033560753
-
Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery
-
Chen Z, Li Y, Krug RM. Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J 1999, 18:2273-2283.
-
(1999)
EMBO J
, vol.18
, pp. 2273-2283
-
-
Chen, Z.1
Li, Y.2
Krug, R.M.3
-
104
-
-
0025177037
-
A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates
-
Wilusz J, Shenk T, Takagaki Y, Manley JL. A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates. Mol Cell Biol 1990, 10:1244-1248.
-
(1990)
Mol Cell Biol
, vol.10
, pp. 1244-1248
-
-
Wilusz, J.1
Shenk, T.2
Takagaki, Y.3
Manley, J.L.4
-
105
-
-
0028028266
-
A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein
-
Takagaki Y, Manley JL. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 1994, 372:471-474.
-
(1994)
Nature
, vol.372
, pp. 471-474
-
-
Takagaki, Y.1
Manley, J.L.2
-
106
-
-
0027400410
-
Mammalian poly(A)-binding protein II. Physical properties and binding to polynucleotides.
-
Wahle E, Lustig A, Jeno P, Maurer P. Mammalian poly(A)-binding protein II. Physical properties and binding to polynucleotides. J Biol Chem 1993, 268:2937-2945.
-
(1993)
J Biol Chem
, vol.268
, pp. 2937-2945
-
-
Wahle, E.1
Lustig, A.2
Jeno, P.3
Maurer, P.4
-
107
-
-
0032529163
-
The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms
-
Moreira A, Takagaki Y, Brackenridge S, Wollerton M, Manley JL, Proudfoot NJ. The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms. Genes Dev 1998, 12:2522-2534.
-
(1998)
Genes Dev
, vol.12
, pp. 2522-2534
-
-
Moreira, A.1
Takagaki, Y.2
Brackenridge, S.3
Wollerton, M.4
Manley, J.L.5
Proudfoot, N.J.6
-
108
-
-
0033984159
-
Complex protein interactions within the human polyadenylation machinery identify a novel component
-
Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol 2000, 20:1515-1525.
-
(2000)
Mol Cell Biol
, vol.20
, pp. 1515-1525
-
-
Takagaki, Y.1
Manley, J.L.2
-
109
-
-
0023867362
-
A 64 kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif
-
Wilusz J, Shenk T. A 64 kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell 1988, 52:221-228.
-
(1988)
Cell
, vol.52
, pp. 221-228
-
-
Wilusz, J.1
Shenk, T.2
-
110
-
-
0026353286
-
Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA
-
Gilmartin GM, Nevins JR. Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA. Mol Cell Biol 1991, 11:2432-2438.
-
(1991)
Mol Cell Biol
, vol.11
, pp. 2432-2438
-
-
Gilmartin, G.M.1
Nevins, J.R.2
-
111
-
-
14844355104
-
Protein and RNA dynamics play key roles in determining the specific recognition of GU-rich polyadenylation regulatory elements by human Cstf-64 protein
-
Deka P, Rajan PK, Perez-Canadillas JM, Varani G. Protein and RNA dynamics play key roles in determining the specific recognition of GU-rich polyadenylation regulatory elements by human Cstf-64 protein. J Mol Biol 2005, 347:719-733.
-
(2005)
J Mol Biol
, vol.347
, pp. 719-733
-
-
Deka, P.1
Rajan, P.K.2
Perez-Canadillas, J.M.3
Varani, G.4
-
112
-
-
0030705196
-
RNA ligands selected by cleavage stimulation factor contain distinct sequence motifs that function as downstream elements in 3′-end processing of pre-mRNA
-
Beyer K, Dandekar T, Keller W. RNA ligands selected by cleavage stimulation factor contain distinct sequence motifs that function as downstream elements in 3′-end processing of pre-mRNA. J Biol Chem 1997, 272:26769-26779.
-
(1997)
J Biol Chem
, vol.272
, pp. 26769-26779
-
-
Beyer, K.1
Dandekar, T.2
Keller, W.3
-
113
-
-
0030920331
-
RNA recognition by the human polyadenylation factor CstF
-
Takagaki Y, Manley JL. RNA recognition by the human polyadenylation factor CstF. Mol Cell Biol 1997, 17:3907-3914.
-
(1997)
Mol Cell Biol
, vol.17
, pp. 3907-3914
-
-
Takagaki, Y.1
Manley, J.L.2
-
114
-
-
77952666620
-
The Prp19 WD40 domain contains a conserved protein interaction region essential for its function
-
Vander Kooi CW, Ren L, Xu P, Ohi MD, Gould KL, Chazin WJ. The Prp19 WD40 domain contains a conserved protein interaction region essential for its function. Structure 2010, 18:584-593.
-
(2010)
Structure
, vol.18
, pp. 584-593
-
-
Vander Kooi, C.W.1
Ren, L.2
Xu, P.3
Ohi, M.D.4
Gould, K.L.5
Chazin, W.J.6
-
115
-
-
19544386803
-
Structural and mechanistic insights into the interaction between Rho and mammalian Dia
-
Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghofer A. Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 2005, 435:513-518.
-
(2005)
Nature
, vol.435
, pp. 513-518
-
-
Rose, R.1
Weyand, M.2
Lammers, M.3
Ishizaki, T.4
Ahmadian, M.R.5
Wittinghofer, A.6
-
116
-
-
24344478208
-
RNA silencing suppressor p21 of Beet yellows virus forms an RNA binding octameric ring structure
-
Ye K, Patel DJ. RNA silencing suppressor p21 of Beet yellows virus forms an RNA binding octameric ring structure. Structure 2005, 13:1375-1384.
-
(2005)
Structure
, vol.13
, pp. 1375-1384
-
-
Ye, K.1
Patel, D.J.2
-
117
-
-
0034650189
-
The Drosophila homologue of the 64 kDa subunit of cleavage stimulation factor interacts with the 77 kDa subunit encoded by the suppressor of forked gene
-
Hatton LS, Eloranta JJ, Figueiredo LM, Takagaki Y, Manley JL, O'Hare K. The Drosophila homologue of the 64 kDa subunit of cleavage stimulation factor interacts with the 77 kDa subunit encoded by the suppressor of forked gene. Nucleic Acids Res 2000, 28:520-526.
-
(2000)
Nucleic Acids Res
, vol.28
, pp. 520-526
-
-
Hatton, L.S.1
Eloranta, J.J.2
Figueiredo, L.M.3
Takagaki, Y.4
Manley, J.L.5
O'Hare, K.6
-
118
-
-
73649107901
-
The hinge domain of the cleavage stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear localization, and polyadenylation
-
Hockert JA, Yeh HJ, MacDonald CC. The hinge domain of the cleavage stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear localization, and polyadenylation. J Biol Chem 2010, 285:695-704.
-
(2010)
J Biol Chem
, vol.285
, pp. 695-704
-
-
Hockert, J.A.1
Yeh, H.J.2
MacDonald, C.C.3
-
119
-
-
0028998441
-
Tetratrico peptide repeat interactions: to TPR or not to TPR?
-
Lamb JR, Tugendreich S, Hieter P. Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 1995, 20:257-259.
-
(1995)
Trends Biochem Sci
, vol.20
, pp. 257-259
-
-
Lamb, J.R.1
Tugendreich, S.2
Hieter, P.3
-
120
-
-
0031940245
-
The HAT helix, a repetitive motif implicated in RNA processing
-
Preker PJ, Keller W. The HAT helix, a repetitive motif implicated in RNA processing. Trends Biochem Sci 1998, 23:15-16.
-
(1998)
Trends Biochem Sci
, vol.23
, pp. 15-16
-
-
Preker, P.J.1
Keller, W.2
-
121
-
-
0033664345
-
Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5
-
Gatto GJ Jr, Geisbrecht BV, Gould SJ, Berg JM. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 2000, 7:1091-1095.
-
(2000)
Nat Struct Biol
, vol.7
, pp. 1091-1095
-
-
Gatto Jr., G.J.1
Geisbrecht, B.V.2
Gould, S.J.3
Berg, J.M.4
-
122
-
-
3042555841
-
Rna14-Rna15 assembly mediates the RNA-binding capability of Saccharomyces cerevisiae cleavage factor IA.
-
Noble CG, Walker PA, Calder LJ, Taylor IA. Rna14-Rna15 assembly mediates the RNA-binding capability of Saccharomyces cerevisiae cleavage factor IA. Nucleic Acids Res 2004, 32:3364-3375.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 3364-3375
-
-
Noble, C.G.1
Walker, P.A.2
Calder, L.J.3
Taylor, I.A.4
-
123
-
-
77951272127
-
The Arabidopsis ortholog of the 77 kDa subunit of the cleavage stimulatory factor (AtCstF-77) involved in mRNA polyadenylation is an RNA-binding protein
-
Bell SA, Hunt AG. The Arabidopsis ortholog of the 77 kDa subunit of the cleavage stimulatory factor (AtCstF-77) involved in mRNA polyadenylation is an RNA-binding protein. FEBS Lett 2010, 584:1449-1454.
-
(2010)
FEBS Lett
, vol.584
, pp. 1449-1454
-
-
Bell, S.A.1
Hunt, A.G.2
-
124
-
-
0027083119
-
A human polyadenylation factor is a G protein β-subunit homologue
-
Takagaki Y, Manley JL. A human polyadenylation factor is a G protein β-subunit homologue. J Biol Chem 1992, 267:23471-23474.
-
(1992)
J Biol Chem
, vol.267
, pp. 23471-23474
-
-
Takagaki, Y.1
Manley, J.L.2
-
125
-
-
0035664074
-
WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases
-
Li D, Roberts R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 2001, 58:2085-2097.
-
(2001)
Cell Mol Life Sci
, vol.58
, pp. 2085-2097
-
-
Li, D.1
Roberts, R.2
-
126
-
-
0033133919
-
The WD repeat: a common architecture for diverse functions
-
Smith TF, Gaitatzes C, Saxena K, Neer EJ. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 1999, 24:181-185.
-
(1999)
Trends Biochem Sci
, vol.24
, pp. 181-185
-
-
Smith, T.F.1
Gaitatzes, C.2
Saxena, K.3
Neer, E.J.4
-
127
-
-
33746828109
-
Molecular recognition of histone H3 by the WD40 protein WDR5
-
Couture JF, Collazo E, Trievel RC. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol 2006, 13:698-703.
-
(2006)
Nat Struct Mol Biol
, vol.13
, pp. 698-703
-
-
Couture, J.F.1
Collazo, E.2
Trievel, R.C.3
-
128
-
-
0035831030
-
The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression
-
Kleiman FE, Manley JL. The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression. Cell 2001, 104:743-753.
-
(2001)
Cell
, vol.104
, pp. 743-753
-
-
Kleiman, F.E.1
Manley, J.L.2
-
129
-
-
0001221269
-
Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50
-
Kleiman FE, Manley JL. Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science 1999, 285:1576-1579.
-
(1999)
Science
, vol.285
, pp. 1576-1579
-
-
Kleiman, F.E.1
Manley, J.L.2
-
130
-
-
55249094317
-
The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50
-
Edwards RA, Lee MS, Tsutakawa SE, Williams RS, Nazeer I, Kleiman FE, Tainer JA, Glover JN. The BARD1 C-terminal domain structure and interactions with polyadenylation factor CstF-50. Biochemistry 2008, 47:11446-11456.
-
(2008)
Biochemistry
, vol.47
, pp. 11446-11456
-
-
Edwards, R.A.1
Lee, M.S.2
Tsutakawa, S.E.3
Williams, R.S.4
Nazeer, I.5
Kleiman, F.E.6
Tainer, J.A.7
Glover, J.N.8
-
131
-
-
13944281226
-
Molecular functions of BRCA1 in the DNA damage response
-
Scully R, Xie A, Nagaraju G. Molecular functions of BRCA1 in the DNA damage response. Cancer Biol Ther 2004, 3:521-527.
-
(2004)
Cancer Biol Ther
, vol.3
, pp. 521-527
-
-
Scully, R.1
Xie, A.2
Nagaraju, G.3
-
132
-
-
0034602833
-
The WD-repeat protein pfs2p bridges two essential factors within the yeast pre-mRNA 3′-end-processing complex
-
Ohnacker M, Barabino SM, Preker PJ, Keller W. The WD-repeat protein pfs2p bridges two essential factors within the yeast pre-mRNA 3′-end-processing complex. EMBO J 2000, 19:37-47.
-
(2000)
EMBO J
, vol.19
, pp. 37-47
-
-
Ohnacker, M.1
Barabino, S.M.2
Preker, P.J.3
Keller, W.4
-
133
-
-
0031037856
-
The C-terminal domain of RNA polymerase II couples mRNA processing to transcription
-
McCracken S, Fong N, Yankulov K, Ballantyne S, Pan G, Greenblatt J, Patterson SD, Wickens M, Bentley DL. The C-terminal domain of RNA polymerase II couples mRNA processing to transcription. Nature 1997, 385:357-361.
-
(1997)
Nature
, vol.385
, pp. 357-361
-
-
McCracken, S.1
Fong, N.2
Yankulov, K.3
Ballantyne, S.4
Pan, G.5
Greenblatt, J.6
Patterson, S.D.7
Wickens, M.8
Bentley, D.L.9
-
134
-
-
0032535492
-
Control of cleavage site selection during mRNA 3′ end formation by a yeast hnRNP
-
Minvielle-Sebastia L, Beyer K, Krecic AM, Hector RE, Swanson MS, Keller W. Control of cleavage site selection during mRNA 3′ end formation by a yeast hnRNP. EMBO J 1998, 17:7454-7468.
-
(1998)
EMBO J
, vol.17
, pp. 7454-7468
-
-
Minvielle-Sebastia, L.1
Beyer, K.2
Krecic, A.M.3
Hector, R.E.4
Swanson, M.S.5
Keller, W.6
-
135
-
-
0035933149
-
Five subunits are required for reconstitution of the cleavage and polyadenylation activities of Saccharomyces cerevisiae cleavage factor I
-
Gross S, Moore C. Five subunits are required for reconstitution of the cleavage and polyadenylation activities of Saccharomyces cerevisiae cleavage factor I. Proc Natl Acad Sci U S A 2001, 98:6080-6085.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, pp. 6080-6085
-
-
Gross, S.1
Moore, C.2
-
136
-
-
0033065488
-
Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3′-end formation
-
Valentini SR, Weiss VH, Silver PA. Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3′-end formation. RNA 1999, 5:272-280.
-
(1999)
RNA
, vol.5
, pp. 272-280
-
-
Valentini, S.R.1
Weiss, V.H.2
Silver, P.A.3
-
137
-
-
0032213290
-
A specific RNA-protein interaction at yeast polyadenylation efficiency elements
-
Chen S, Hyman LE. A specific RNA-protein interaction at yeast polyadenylation efficiency elements. Nucleic Acids Res 1998, 26:4965-4974.
-
(1998)
Nucleic Acids Res
, vol.26
, pp. 4965-4974
-
-
Chen, S.1
Hyman, L.E.2
-
138
-
-
0035162071
-
Rna15 interaction with the A-rich yeast polyadenylation signal is an essential step in mRNA 3′-end formation
-
Gross S, Moore CL. Rna15 interaction with the A-rich yeast polyadenylation signal is an essential step in mRNA 3′-end formation. Mol Cell Biol 2001, 21:8045-8055.
-
(2001)
Mol Cell Biol
, vol.21
, pp. 8045-8055
-
-
Gross, S.1
Moore, C.L.2
-
139
-
-
33846388539
-
Alternative 3′ pre-mRNA processing in Saccharomyces cerevisiae is modulated by Nab4/Hrp1 in vivo
-
Kim Guisbert KS, Li H, Guthrie C. Alternative 3′ pre-mRNA processing in Saccharomyces cerevisiae is modulated by Nab4/Hrp1 in vivo. PLoS Biol 2007, 5:e6.
-
(2007)
PLoS Biol
, vol.5
-
-
Kim Guisbert, K.S.1
Li, H.2
Guthrie, C.3
-
140
-
-
84857746060
-
The hunt for the 3' endonuclease
-
Dominski Z. The hunt for the 3' endonuclease. WIREs RNA 2010, 1:325–340.
-
(2010)
WIREs RNA
, vol.1
, pp. 325-340
-
-
Dominski, Z.1
|