메뉴 건너뛰기




Volumn 2, Issue 5, 2011, Pages 732-747

Structural biology of poly(A) site definition

Author keywords

[No Author keywords available]

Indexed keywords

CIS ACTING ELEMENT; HISTONE; MESSENGER RNA; CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR;

EID: 84857743195     PISSN: 17577004     EISSN: 17577012     Source Type: Journal    
DOI: 10.1002/wrna.88     Document Type: Review
Times cited : (46)

References (140)
  • 1
    • 42449084129 scopus 로고    scopus 로고
    • Protein factors in pre-mRNA 3′-end processing
    • Mandel CR, Bai Y, Tong L. Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 2008, 65:1099-1122.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 1099-1122
    • Mandel, C.R.1    Bai, Y.2    Tong, L.3
  • 2
    • 2342505693 scopus 로고    scopus 로고
    • New perspectives on connecting messenger RNA 3′ end formation to transcription
    • Proudfoot N. New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr Opin Cell Biol 2004, 16:272-278.
    • (2004) Curr Opin Cell Biol , vol.16 , pp. 272-278
    • Proudfoot, N.1
  • 3
    • 0036364652 scopus 로고    scopus 로고
    • A history of poly A sequences: from formation to factors to function
    • Edmonds M. A history of poly A sequences: from formation to factors to function. Prog Nucleic Acid Res Mol Biol 2002, 71:285-389.
    • (2002) Prog Nucleic Acid Res Mol Biol , vol.71 , pp. 285-389
    • Edmonds, M.1
  • 4
    • 0033059981 scopus 로고    scopus 로고
    • Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis
    • Zhao J, Hyman L, Moore C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999, 63:405-445.
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 405-445
    • Zhao, J.1    Hyman, L.2    Moore, C.3
  • 5
    • 38949111543 scopus 로고    scopus 로고
    • 3′ end mRNA processing: molecular mechanisms and implications for health and disease
    • Danckwardt S, Hentze MW, Kulozik AE. 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 2008, 27:482-498.
    • (2008) EMBO J , vol.27 , pp. 482-498
    • Danckwardt, S.1    Hentze, M.W.2    Kulozik, A.E.3
  • 6
    • 0008146244 scopus 로고    scopus 로고
    • 3′-End processing of pre-mRNA in eukaryotes
    • Wahle E, Ruegsegger U. 3′-End processing of pre-mRNA in eukaryotes. FEMS Microbiol Rev 1999, 23:277-295.
    • (1999) FEMS Microbiol Rev , vol.23 , pp. 277-295
    • Wahle, E.1    Ruegsegger, U.2
  • 7
    • 0032826096 scopus 로고    scopus 로고
    • Formation of the 3′ end of histone mRNA
    • Dominski Z, Marzluff WF. Formation of the 3′ end of histone mRNA. Gene 1999, 239:1-14.
    • (1999) Gene , vol.239 , pp. 1-14
    • Dominski, Z.1    Marzluff, W.F.2
  • 8
    • 0037164730 scopus 로고    scopus 로고
    • Polyadenylation: a tail of two complexes
    • Proudfoot N, O'Sullivan J. Polyadenylation: a tail of two complexes. Curr Biol 2002, 12:R855-R857.
    • (2002) Curr Biol , vol.12
    • Proudfoot, N.1    O'Sullivan, J.2
  • 10
    • 60149110358 scopus 로고    scopus 로고
    • Pre-mRNA processing reaches back to transcription and ahead to translation
    • Moore MJ, Proudfoot NJ. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 2009, 136:688-700.
    • (2009) Cell , vol.136 , pp. 688-700
    • Moore, M.J.1    Proudfoot, N.J.2
  • 11
    • 77953284100 scopus 로고    scopus 로고
    • Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation
    • Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 2010, 38:2757-2774.
    • (2010) Nucleic Acids Res , vol.38 , pp. 2757-2774
    • Millevoi, S.1    Vagner, S.2
  • 12
    • 58149144383 scopus 로고    scopus 로고
    • Alternative polyadenylation: a twist on mRNA 3′ end formation
    • Lutz CS. Alternative polyadenylation: a twist on mRNA 3′ end formation. ACS Chem Biol 2008, 3:609-617.
    • (2008) ACS Chem Biol , vol.3 , pp. 609-617
    • Lutz, C.S.1
  • 13
    • 51149105080 scopus 로고    scopus 로고
    • Messenger RNA 3′ end formation in plants
    • Hunt AG. Messenger RNA 3′ end formation in plants. Curr Top Microbiol Immunol 2008, 326:151-177.
    • (2008) Curr Top Microbiol Immunol , vol.326 , pp. 151-177
    • Hunt, A.G.1
  • 14
    • 66049104920 scopus 로고    scopus 로고
    • Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development
    • Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A 2009, 106:7028-7033.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 7028-7033
    • Ji, Z.1    Lee, J.Y.2    Pan, Z.3    Jiang, B.4    Tian, B.5
  • 15
    • 13744254695 scopus 로고    scopus 로고
    • A large-scale analysis of mRNA polyadenylation of human and mouse genes
    • Tian B, Hu J, Zhang H, Lutz CS. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 2005, 33:201-212.
    • (2005) Nucleic Acids Res , vol.33 , pp. 201-212
    • Tian, B.1    Hu, J.2    Zhang, H.3    Lutz, C.S.4
  • 16
    • 77950587742 scopus 로고    scopus 로고
    • An up-close look at the pre-mRNA 3′-end processing complex
    • Shi Y, Chan S, Martinez-Santibanez G. An up-close look at the pre-mRNA 3′-end processing complex. RNA Biol 2009, 6:522-525.
    • (2009) RNA Biol , vol.6 , pp. 522-525
    • Shi, Y.1    Chan, S.2    Martinez-Santibanez, G.3
  • 17
    • 27644485122 scopus 로고    scopus 로고
    • Eukaryotic mRNA 3′ processing: a common means to different ends
    • Gilmartin GM. Eukaryotic mRNA 3′ processing: a common means to different ends. Genes Dev 2005, 19:2517-2521.
    • (2005) Genes Dev , vol.19 , pp. 2517-2521
    • Gilmartin, G.M.1
  • 18
    • 84857772692 scopus 로고    scopus 로고
    • Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression
    • Lutz CS, Moreira A. Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. WIREs RNA 2011, 2:22-31.
    • (2011) WIREs RNA , vol.2 , pp. 22-31
    • Lutz, C.S.1    Moreira, A.2
  • 19
    • 84857761249 scopus 로고    scopus 로고
    • Pre-mRNA 3′-end processing complex assembly and function
    • Chan S, Choi E-A, Shi Y. Pre-mRNA 3′-end processing complex assembly and function. WIRES RNA 2011, 3:321-335.
    • (2011) WIRES RNA , vol.3 , pp. 321-335
    • Chan, S.1    Choi, E.-A.2    Shi, Y.3
  • 20
    • 1442313922 scopus 로고    scopus 로고
    • Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase
    • Kaufmann I, Martin G, Friedlein A, Langen H, Keller W. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 2004, 23:616-626.
    • (2004) EMBO J , vol.23 , pp. 616-626
    • Kaufmann, I.1    Martin, G.2    Friedlein, A.3    Langen, H.4    Keller, W.5
  • 21
    • 0031610366 scopus 로고    scopus 로고
    • Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits
    • Rüegsegger U, Blank D, Keller W. Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Mol Cell 1998, 1:243-253.
    • (1998) Mol Cell , vol.1 , pp. 243-253
    • Rüegsegger, U.1    Blank, D.2    Keller, W.3
  • 22
    • 1842329727 scopus 로고    scopus 로고
    • The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins
    • Barabino SM, Hubner W, Jenny A, Minvielle-Sebastia L, Keller W. The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes Dev 1997, 11:1703-1716.
    • (1997) Genes Dev , vol.11 , pp. 1703-1716
    • Barabino, S.M.1    Hubner, W.2    Jenny, A.3    Minvielle-Sebastia, L.4    Keller, W.5
  • 23
    • 0029991323 scopus 로고    scopus 로고
    • Purification and characterization of human cleavage factor Im involved in the 3′ end processing of messenger RNA precursors.
    • Rüegsegger U, Beyer K, Keller W. Purification and characterization of human cleavage factor Im involved in the 3′ end processing of messenger RNA precursors. J Biol Chem 1996, 271:6107-6113.
    • (1996) J Biol Chem , vol.271 , pp. 6107-6113
    • Rüegsegger, U.1    Beyer, K.2    Keller, W.3
  • 24
    • 0029910068 scopus 로고    scopus 로고
    • Purification of the Saccharomyces cerevisiae cleavage/polyadenylation factor I. Separation into two components that are required for both cleavage and polyadenylation of mRNA 3′ ends.
    • Kessler MM, Zhao J, Moore CL. Purification of the Saccharomyces cerevisiae cleavage/polyadenylation factor I. Separation into two components that are required for both cleavage and polyadenylation of mRNA 3′ ends. J Biol Chem 1996, 271:27167-27175.
    • (1996) J Biol Chem , vol.271 , pp. 27167-27175
    • Kessler, M.M.1    Zhao, J.2    Moore, C.L.3
  • 25
    • 0028789410 scopus 로고
    • The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation
    • Murthy KG, Manley JL. The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation. Genes Dev 1995, 9:2672-2683.
    • (1995) Genes Dev , vol.9 , pp. 2672-2683
    • Murthy, K.G.1    Manley, J.L.2
  • 26
    • 0028589505 scopus 로고
    • RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3′-end processing factor
    • Minvielle-Sebastia L, Preker PJ, Keller W. RNA14 and RNA15 proteins as components of a yeast pre-mRNA 3′-end processing factor. Science 1994, 266:1702-1705.
    • (1994) Science , vol.266 , pp. 1702-1705
    • Minvielle-Sebastia, L.1    Preker, P.J.2    Keller, W.3
  • 27
    • 0028025647 scopus 로고
    • The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location
    • MacDonald CC, Wilusz J, Shenk T. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol Cell Biol 1994, 14:6647-6654.
    • (1994) Mol Cell Biol , vol.14 , pp. 6647-6654
    • MacDonald, C.C.1    Wilusz, J.2    Shenk, T.3
  • 31
    • 77955794351 scopus 로고    scopus 로고
    • Crystal structure of an archaeal cleavage and polyadenylation specificity factor subunit from Pyrococcus horikoshii
    • Nishida Y, Ishikawa H, Baba S, Nakagawa N, Kuramitsu S, Masui R. Crystal structure of an archaeal cleavage and polyadenylation specificity factor subunit from Pyrococcus horikoshii. Proteins 2010, 78:2395-2398.
    • (2010) Proteins , vol.78 , pp. 2395-2398
    • Nishida, Y.1    Ishikawa, H.2    Baba, S.3    Nakagawa, N.4    Kuramitsu, S.5    Masui, R.6
  • 32
    • 78649905057 scopus 로고    scopus 로고
    • Crystal structure of a dimeric archaeal cleavage and polyadenylation specificity factor
    • Mir-Montazeri B, Ammelburg M, Forouzan D, Lupas AN, Hartmann MD. Crystal structure of a dimeric archaeal cleavage and polyadenylation specificity factor. J Struct Biol 2011, 173:191-195.
    • (2011) J Struct Biol , vol.173 , pp. 191-195
    • Mir-Montazeri, B.1    Ammelburg, M.2    Forouzan, D.3    Lupas, A.N.4    Hartmann, M.D.5
  • 33
    • 0037507248 scopus 로고    scopus 로고
    • Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein
    • Perez Canadillas JM, Varani G. Recognition of GU-rich polyadenylation regulatory elements by human CstF-64 protein. EMBO J 2003, 22:2821-2830.
    • (2003) EMBO J , vol.22 , pp. 2821-2830
    • Perez Canadillas, J.M.1    Varani, G.2
  • 34
    • 77953261028 scopus 로고    scopus 로고
    • Structure of the Rna15 RRM-RNA complex reveals the molecular basis of GU specificity in transcriptional 3′-end processing factors
    • Pancevac C, Goldstone DC, Ramos A, Taylor IA. Structure of the Rna15 RRM-RNA complex reveals the molecular basis of GU specificity in transcriptional 3′-end processing factors. Nucleic Acids Res 2010, 38:3119-3132.
    • (2010) Nucleic Acids Res , vol.38 , pp. 3119-3132
    • Pancevac, C.1    Goldstone, D.C.2    Ramos, A.3    Taylor, I.A.4
  • 35
    • 33847327963 scopus 로고    scopus 로고
    • The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3′-end processing
    • Qu X, Perez-Canadillas JM, Agrawal S, De Baecke J, Cheng H, Varani G, Moore C. The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3′-end processing. J Biol Chem 2007, 282:2101-2115.
    • (2007) J Biol Chem , vol.282 , pp. 2101-2115
    • Qu, X.1    Perez-Canadillas, J.M.2    Agrawal, S.3    De Baecke, J.4    Cheng, H.5    Varani, G.6    Moore, C.7
  • 36
    • 34547839747 scopus 로고    scopus 로고
    • The structure of the CstF-77 homodimer provides insights into CstF assembly
    • Legrand P, Pinaud N, Minvielle-Sebastia L, Fribourg S. The structure of the CstF-77 homodimer provides insights into CstF assembly. Nucleic Acids Res 2007, 35:4515-4522.
    • (2007) Nucleic Acids Res , vol.35 , pp. 4515-4522
    • Legrand, P.1    Pinaud, N.2    Minvielle-Sebastia, L.3    Fribourg, S.4
  • 37
    • 33947202065 scopus 로고    scopus 로고
    • Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors
    • Bai Y, Auperin TC, Chou CY, Chang GG, Manley JL, Tong L. Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors. Mol Cell 2007, 25:863-875.
    • (2007) Mol Cell , vol.25 , pp. 863-875
    • Bai, Y.1    Auperin, T.C.2    Chou, C.Y.3    Chang, G.G.4    Manley, J.L.5    Tong, L.6
  • 38
    • 79951536375 scopus 로고    scopus 로고
    • Hexameric architecture of CstF supported by CstF-50 homodimerization domain structure
    • Moreno-Morcillo M, Minvielle-Sebastia L, Mackereth C, Fribourg S. Hexameric architecture of CstF supported by CstF-50 homodimerization domain structure. RNA 2011, 17:412-418.
    • (2011) RNA , vol.17 , pp. 412-418
    • Moreno-Morcillo, M.1    Minvielle-Sebastia, L.2    Mackereth, C.3    Fribourg, S.4
  • 41
    • 3142615882 scopus 로고    scopus 로고
    • Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors
    • Meinhart A, Cramer P. Recognition of RNA polymerase II carboxy-terminal domain by 3′-RNA-processing factors. Nature 2004, 430:223-226.
    • (2004) Nature , vol.430 , pp. 223-226
    • Meinhart, A.1    Cramer, P.2
  • 42
    • 0034664049 scopus 로고    scopus 로고
    • Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP
    • Martin G, Keller W, Doublié S. Crystal structure of mammalian poly(A) polymerase in complex with an analog of ATP. EMBO J 2000, 19:4193-4203.
    • (2000) EMBO J , vol.19 , pp. 4193-4203
    • Martin, G.1    Keller, W.2    Doublié, S.3
  • 43
    • 3843067711 scopus 로고    scopus 로고
    • Biochemical and structural insights into substrate binding and catalytic mechanism of mammalian poly(A) polymerase
    • Martin G, Moglich A, Keller W, Doublié S. Biochemical and structural insights into substrate binding and catalytic mechanism of mammalian poly(A) polymerase. J Mol Biol 2004, 341:911-925.
    • (2004) J Mol Biol , vol.341 , pp. 911-925
    • Martin, G.1    Moglich, A.2    Keller, W.3    Doublié, S.4
  • 45
    • 33846781442 scopus 로고    scopus 로고
    • X-ray crystallographic and steady state fluorescence characterization of the protein dynamics of yeast polyadenylate polymerase
    • Balbo PB, Toth J, Bohm A. X-ray crystallographic and steady state fluorescence characterization of the protein dynamics of yeast polyadenylate polymerase. J Mol Biol 2007, 366:1401-1415.
    • (2007) J Mol Biol , vol.366 , pp. 1401-1415
    • Balbo, P.B.1    Toth, J.2    Bohm, A.3
  • 46
    • 42449108672 scopus 로고    scopus 로고
    • Crystal structure and possible dimerization of the single RRM of human PABPN1
    • Ge H, Zhou D, Tong S, Gao Y, Teng M, Niu L. Crystal structure and possible dimerization of the single RRM of human PABPN1. Proteins 2008, 71:1539-1545.
    • (2008) Proteins , vol.71 , pp. 1539-1545
    • Ge, H.1    Zhou, D.2    Tong, S.3    Gao, Y.4    Teng, M.5    Niu, L.6
  • 47
    • 79952459288 scopus 로고    scopus 로고
    • Crystal structure of a human cleavage factor CFIm25/CFIm68/RNA complex provides an insight into poly(A) site recognition and rna looping.
    • Yang Q, Coseno M, Gilmartin GM, Doublié S. Crystal structure of a human cleavage factor CFIm25/CFIm68/RNA complex provides an insight into poly(A) site recognition and rna looping. Structure 2011, 19:368-377.
    • (2011) Structure , vol.19 , pp. 368-377
    • Yang, Q.1    Coseno, M.2    Gilmartin, G.M.3    Doublié, S.4
  • 49
    • 33846688769 scopus 로고    scopus 로고
    • Structure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor.
    • Noble CG, Beuth B, Taylor IA. Structure of a nucleotide-bound Clp1-Pcf11 polyadenylation factor. Nucleic Acids Res 2007, 35:87-99.
    • (2007) Nucleic Acids Res , vol.35 , pp. 87-99
    • Noble, C.G.1    Beuth, B.2    Taylor, I.A.3
  • 50
    • 46049095239 scopus 로고    scopus 로고
    • Structure of yeast poly(A) polymerase in complex with a peptide from Fip1, an intrinsically disordered protein
    • Meinke G, Ezeokonkwo C, Balbo P, Stafford W, Moore C, Bohm A. Structure of yeast poly(A) polymerase in complex with a peptide from Fip1, an intrinsically disordered protein. Biochemistry 2008, 47:6859-6869.
    • (2008) Biochemistry , vol.47 , pp. 6859-6869
    • Meinke, G.1    Ezeokonkwo, C.2    Balbo, P.3    Stafford, W.4    Moore, C.5    Bohm, A.6
  • 51
  • 52
    • 77953454014 scopus 로고    scopus 로고
    • Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3′ processing
    • Yang Q, Gilmartin GM, Doublié S. Structural basis of UGUA recognition by the Nudix protein CFIm25 and implications for a regulatory role in mRNA 3′ processing. Proc Natl Acad Sci U S A 2010, 107:10062-10067.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 10062-10067
    • Yang, Q.1    Gilmartin, G.M.2    Doublié, S.3
  • 53
    • 33746296753 scopus 로고    scopus 로고
    • Grabbing the message: structural basis of mRNA 3′UTR recognition by Hrp1
    • Perez-Canadillas JM. Grabbing the message: structural basis of mRNA 3′UTR recognition by Hrp1. EMBO J 2006, 25:3167-3178.
    • (2006) EMBO J , vol.25 , pp. 3167-3178
    • Perez-Canadillas, J.M.1
  • 54
    • 77955273066 scopus 로고    scopus 로고
    • Novel protein-protein contacts facilitate mRNA 3′-processing signal recognition by Rna15 and Hrp1
    • Leeper TC, Qu X, Lu C, Moore C, Varani G. Novel protein-protein contacts facilitate mRNA 3′-processing signal recognition by Rna15 and Hrp1. J Mol Biol 2010, 401:334-349.
    • (2010) J Mol Biol , vol.401 , pp. 334-349
    • Leeper, T.C.1    Qu, X.2    Lu, C.3    Moore, C.4    Varani, G.5
  • 55
    • 34548382114 scopus 로고    scopus 로고
    • Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis
    • Balbo PB, Bohm A. Mechanism of poly(A) polymerase: structure of the enzyme-MgATP-RNA ternary complex and kinetic analysis. Structure 2007, 15: 1117-1131.
    • (2007) Structure , vol.15 , pp. 1117-1131
    • Balbo, P.B.1    Bohm, A.2
  • 56
    • 0033578927 scopus 로고    scopus 로고
    • Recognition of polyadenylate RNA by the poly(A)-binding protein
    • Deo RC, Bonanno JB, Sonenberg N, Burley SK. Recognition of polyadenylate RNA by the poly(A)-binding protein. Cell 1999, 98:835-845.
    • (1999) Cell , vol.98 , pp. 835-845
    • Deo, R.C.1    Bonanno, J.B.2    Sonenberg, N.3    Burley, S.K.4
  • 57
    • 22344439263 scopus 로고    scopus 로고
    • Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition
    • Venkataraman K, Brown KM, Gilmartin GM. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 2005, 19:1315-1327.
    • (2005) Genes Dev , vol.19 , pp. 1315-1327
    • Venkataraman, K.1    Brown, K.M.2    Gilmartin, G.M.3
  • 58
    • 0017089669 scopus 로고
    • 3′ non-coding region sequences in eukaryotic messenger RNA
    • Proudfoot NJ, Brownlee GG. 3′ non-coding region sequences in eukaryotic messenger RNA. Nature 1976, 263:211-214.
    • (1976) Nature , vol.263 , pp. 211-214
    • Proudfoot, N.J.1    Brownlee, G.G.2
  • 60
    • 25844497003 scopus 로고    scopus 로고
    • Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation
    • Hu J, Lutz CS, Wilusz J, Tian B. Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation. RNA 2005, 11:1485-1493.
    • (2005) RNA , vol.11 , pp. 1485-1493
    • Hu, J.1    Lutz, C.S.2    Wilusz, J.3    Tian, B.4
  • 61
    • 44349130371 scopus 로고    scopus 로고
    • Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation
    • Shen Y, Ji G, Haas BJ, Wu X, Zheng J, Reese GJ, Li QQ. Genome level analysis of rice mRNA 3′-end processing signals and alternative polyadenylation. Nucleic Acids Res 2008, 36:3150-3161.
    • (2008) Nucleic Acids Res , vol.36 , pp. 3150-3161
    • Shen, Y.1    Ji, G.2    Haas, B.J.3    Wu, X.4    Zheng, J.5    Reese, G.J.6    Li, Q.Q.7
  • 62
    • 0019472442 scopus 로고
    • The sequence 5′-AAUAAA-3′ forms parts of the recognition site for polyadenylation of late SV40 mRNAs
    • Fitzgerald M, Shenk T. The sequence 5′-AAUAAA-3′ forms parts of the recognition site for polyadenylation of late SV40 mRNAs. Cell 1981, 24:251-260.
    • (1981) Cell , vol.24 , pp. 251-260
    • Fitzgerald, M.1    Shenk, T.2
  • 63
    • 33747353311 scopus 로고    scopus 로고
    • A multispecies comparison of the metazoan 3′-processing downstream elements and the CstF-64 RNA recognition motif
    • Salisbury J, Hutchison KW, Graber JH. A multispecies comparison of the metazoan 3′-processing downstream elements and the CstF-64 RNA recognition motif. BMC Genomics 2006, 7:55.
    • (2006) BMC Genomics , vol.7 , pp. 55
    • Salisbury, J.1    Hutchison, K.W.2    Graber, J.H.3
  • 64
    • 0033081347 scopus 로고    scopus 로고
    • Genomic detection of new yeast pre-mRNA 3′-end-processing signals
    • Graber JH, Cantor CR, Mohr SC, Smith TF. Genomic detection of new yeast pre-mRNA 3′-end-processing signals. Nucleic Acids Res 1999, 27:888-894.
    • (1999) Nucleic Acids Res , vol.27 , pp. 888-894
    • Graber, J.H.1    Cantor, C.R.2    Mohr, S.C.3    Smith, T.F.4
  • 65
    • 0030803670 scopus 로고    scopus 로고
    • Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3′-end formation in yeast
    • Kessler MM, Henry MF, Shen E, Zhao J, Gross S, Silver PA, Moore CL. Hrp1, a sequence-specific RNA-binding protein that shuttles between the nucleus and the cytoplasm, is required for mRNA 3′-end formation in yeast. Genes Dev 1997, 11:2545-2556.
    • (1997) Genes Dev , vol.11 , pp. 2545-2556
    • Kessler, M.M.1    Henry, M.F.2    Shen, E.3    Zhao, J.4    Gross, S.5    Silver, P.A.6    Moore, C.L.7
  • 66
    • 0035876112 scopus 로고    scopus 로고
    • Recognition of polyadenylation sites in yeast pre-mRNAs by cleavage and polyadenylation factor
    • Dichtl B, Keller W. Recognition of polyadenylation sites in yeast pre-mRNAs by cleavage and polyadenylation factor. EMBO J 2001, 20:3197-3209.
    • (2001) EMBO J , vol.20 , pp. 3197-3209
    • Dichtl, B.1    Keller, W.2
  • 67
    • 79952484876 scopus 로고    scopus 로고
    • mRNA 3′ end processing and more-multiple functions of mammalian cleavage factor I-68
    • Ruepp MD, Schümperli D, Barabino SML. mRNA 3′ end processing and more-multiple functions of mammalian cleavage factor I-68. WIREs RNA 2011, 2:79-91.
    • (2011) WIREs RNA , vol.2 , pp. 79-91
    • Ruepp, M.D.1    Schümperli, D.2    Barabino, S.M.L.3
  • 68
    • 0024284107 scopus 로고
    • Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation
    • Takagaki Y, Ryner LC, Manley JL. Separation and characterization of a poly(A) polymerase and a cleavage/specificity factor required for pre-mRNA polyadenylation. Cell 1988, 52:731-742.
    • (1988) Cell , vol.52 , pp. 731-742
    • Takagaki, Y.1    Ryner, L.C.2    Manley, J.L.3
  • 69
    • 0347416974 scopus 로고    scopus 로고
    • A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im
    • Brown KM, Gilmartin GM. A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im. Mol Cell 2003, 12:1467-1476.
    • (2003) Mol Cell , vol.12 , pp. 1467-1476
    • Brown, K.M.1    Gilmartin, G.M.2
  • 70
    • 4143151952 scopus 로고    scopus 로고
    • Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization
    • Dettwiler S, Aringhieri C, Cardinale S, Keller W, Barabino SM. Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. J Biol Chem 2004, 279:35788-35797.
    • (2004) J Biol Chem , vol.279 , pp. 35788-35797
    • Dettwiler, S.1    Aringhieri, C.2    Cardinale, S.3    Keller, W.4    Barabino, S.M.5
  • 71
    • 30744470374 scopus 로고    scopus 로고
    • The Nudix hydrolase superfamily
    • McLennan AG. The Nudix hydrolase superfamily. Cell Mol Life Sci 2006, 63:123-143.
    • (2006) Cell Mol Life Sci , vol.63 , pp. 123-143
    • McLennan, A.G.1
  • 74
    • 0035976721 scopus 로고    scopus 로고
    • Interaction of poly(A) polymerase with the 25-kDa subunit of cleavage factor I
    • Kim H, Lee Y. Interaction of poly(A) polymerase with the 25-kDa subunit of cleavage factor I. Biochem Biophys Res Commun 2001, 289:513-518.
    • (2001) Biochem Biophys Res Commun , vol.289 , pp. 513-518
    • Kim, H.1    Lee, Y.2
  • 75
    • 33947514003 scopus 로고    scopus 로고
    • Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing
    • Shimazu T, Horinouchi S, Yoshida M. Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing. J Biol Chem 2007, 282:4470-4478.
    • (2007) J Biol Chem , vol.282 , pp. 4470-4478
    • Shimazu, T.1    Horinouchi, S.2    Yoshida, M.3
  • 76
    • 0033835333 scopus 로고    scopus 로고
    • Sorting out the complexity of SR protein functions
    • Graveley BR. Sorting out the complexity of SR protein functions. RNA 2000, 6:1197-1211.
    • (2000) RNA , vol.6 , pp. 1197-1211
    • Graveley, B.R.1
  • 77
    • 33750200773 scopus 로고    scopus 로고
    • An interaction between U2AF 65 and CF I(m) links the splicing and 3′ end processing machineries
    • Millevoi S, Loulergue C, Dettwiler S, Karaa SZ, Keller W, Antoniou M, Vagner S. An interaction between U2AF 65 and CF I(m) links the splicing and 3′ end processing machineries. EMBO J 2006, 25:4854-4864.
    • (2006) EMBO J , vol.25 , pp. 4854-4864
    • Millevoi, S.1    Loulergue, C.2    Dettwiler, S.3    Karaa, S.Z.4    Keller, W.5    Antoniou, M.6    Vagner, S.7
  • 78
    • 0142209394 scopus 로고    scopus 로고
    • Association of polyadenylation cleavage factor I with U1 snRNP
    • Awasthi S, Alwine JC. Association of polyadenylation cleavage factor I with U1 snRNP. RNA 2003, 9:1400-1409.
    • (2003) RNA , vol.9 , pp. 1400-1409
    • Awasthi, S.1    Alwine, J.C.2
  • 79
    • 0036674269 scopus 로고    scopus 로고
    • Large-scale proteomic analysis of the human spliceosome
    • Rappsilber J, Ryder U, Lamond AI, Mann M. Large-scale proteomic analysis of the human spliceosome. Genome Res 2002, 12:1231-1245.
    • (2002) Genome Res , vol.12 , pp. 1231-1245
    • Rappsilber, J.1    Ryder, U.2    Lamond, A.I.3    Mann, M.4
  • 80
    • 0037126061 scopus 로고    scopus 로고
    • Purification and electron microscopic visualization of functional human spliceosomes
    • Zhou Z, Sim J, Griffith J, Reed R. Purification and electron microscopic visualization of functional human spliceosomes. Proc Natl Acad Sci U S A 2002, 99:12203-12207.
    • (2002) Proc Natl Acad Sci U S A , vol.99 , pp. 12203-12207
    • Zhou, Z.1    Sim, J.2    Griffith, J.3    Reed, R.4
  • 82
    • 33845675377 scopus 로고    scopus 로고
    • Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3′-UTRs
    • Kubo T, Wada T, Yamaguchi Y, Shimizu A, Handa H. Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3′-UTRs. Nucleic Acids Res 2006, 34:6264-6271.
    • (2006) Nucleic Acids Res , vol.34 , pp. 6264-6271
    • Kubo, T.1    Wada, T.2    Yamaguchi, Y.3    Shimizu, A.4    Handa, H.5
  • 83
    • 40949131742 scopus 로고    scopus 로고
    • Pre-messenger RNA cleavage factor I (CFIm): potential role in alternative polyadenylation during spermatogenesis
    • Sartini BL, Wang H, Wang W, Millette CF, Kilpatrick DL. Pre-messenger RNA cleavage factor I (CFIm): potential role in alternative polyadenylation during spermatogenesis. Biol Reprod 2008, 78:472-482.
    • (2008) Biol Reprod , vol.78 , pp. 472-482
    • Sartini, B.L.1    Wang, H.2    Wang, W.3    Millette, C.F.4    Kilpatrick, D.L.5
  • 85
    • 65549149976 scopus 로고    scopus 로고
    • A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs
    • Sullivan KD, Steiniger M, Marzluff WF. A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs. Mol Cell 2009, 34:322-332.
    • (2009) Mol Cell , vol.34 , pp. 322-332
    • Sullivan, K.D.1    Steiniger, M.2    Marzluff, W.F.3
  • 86
    • 1642488290 scopus 로고    scopus 로고
    • Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease
    • Ryan K, Calvo O, Manley JL. Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. RNA 2004, 10:565-573.
    • (2004) RNA , vol.10 , pp. 565-573
    • Ryan, K.1    Calvo, O.2    Manley, J.L.3
  • 87
    • 0037102538 scopus 로고    scopus 로고
    • Metallo-β-lactamase fold within nucleic acids processing enzymes: the β-CASP family
    • Callebaut I, Moshous D, Mornon JP, de Villartay JP. Metallo-β-lactamase fold within nucleic acids processing enzymes: the β-CASP family. Nucleic Acids Res 2002, 30:3592-3601.
    • (2002) Nucleic Acids Res , vol.30 , pp. 3592-3601
    • Callebaut, I.1    Moshous, D.2    Mornon, J.P.3    de Villartay, J.P.4
  • 89
    • 34247157802 scopus 로고    scopus 로고
    • Nucleases of the metallo-β-lactamase family and their role in DNA and RNA metabolism
    • Dominski Z. Nucleases of the metallo-β-lactamase family and their role in DNA and RNA metabolism. Crit Rev Biochem Mol Biol 2007, 42:67-93.
    • (2007) Crit Rev Biochem Mol Biol , vol.42 , pp. 67-93
    • Dominski, Z.1
  • 90
    • 33845286132 scopus 로고    scopus 로고
    • Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-β-lactamase superfamily
    • Ishikawa H, Nakagawa N, Kuramitsu S, Masui R. Crystal structure of TTHA0252 from Thermus thermophilus HB8, a RNA degradation protein of the metallo-β-lactamase superfamily. J Biochem 2006, 140:535-542.
    • (2006) J Biochem , vol.140 , pp. 535-542
    • Ishikawa, H.1    Nakagawa, N.2    Kuramitsu, S.3    Masui, R.4
  • 92
    • 34948859355 scopus 로고    scopus 로고
    • Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily
    • Bebrone C. Metallo-β-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily. Biochem Pharmacol 2007, 74:1686-1701.
    • (2007) Biochem Pharmacol , vol.74 , pp. 1686-1701
    • Bebrone, C.1
  • 93
    • 53249132654 scopus 로고    scopus 로고
    • Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′-end maturation
    • Kolev NG, Yario TA, Benson E, Steitz JA. Conserved motifs in both CPSF73 and CPSF100 are required to assemble the active endonuclease for histone mRNA 3′-end maturation. EMBO Rep 2008, 9:1013-1018.
    • (2008) EMBO Rep , vol.9 , pp. 1013-1018
    • Kolev, N.G.1    Yario, T.A.2    Benson, E.3    Steitz, J.A.4
  • 94
    • 33750222859 scopus 로고    scopus 로고
    • Sequence-specific binding of single-stranded RNA: is there a code for recognition?
    • Auweter SD, Oberstrass FC, Allain FH. Sequence-specific binding of single-stranded RNA: is there a code for recognition? Nucleic Acids Res 2006, 34:4943-4959.
    • (2006) Nucleic Acids Res , vol.34 , pp. 4943-4959
    • Auweter, S.D.1    Oberstrass, F.C.2    Allain, F.H.3
  • 96
    • 0242380645 scopus 로고    scopus 로고
    • The role of the yeast cleavage and polyadenylation factor subunit Ydh1p/Cft2p in pre-mRNA 3′-end formation
    • Kyburz A, Sadowski M, Dichtl B, Keller W. The role of the yeast cleavage and polyadenylation factor subunit Ydh1p/Cft2p in pre-mRNA 3′-end formation. Nucleic Acids Res 2003, 31:3936-3945.
    • (2003) Nucleic Acids Res , vol.31 , pp. 3936-3945
    • Kyburz, A.1    Sadowski, M.2    Dichtl, B.3    Keller, W.4
  • 97
    • 33746722726 scopus 로고    scopus 로고
    • The 73 kD subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis
    • Xu R, Zhao H, Dinkins RD, Cheng X, Carberry G, Li QQ. The 73 kD subunit of the cleavage and polyadenylation specificity factor (CPSF) complex affects reproductive development in Arabidopsis. Plant Mol Biol 2006, 61:799-815.
    • (2006) Plant Mol Biol , vol.61 , pp. 799-815
    • Xu, R.1    Zhao, H.2    Dinkins, R.D.3    Cheng, X.4    Carberry, G.5    Li, Q.Q.6
  • 98
    • 13444249745 scopus 로고    scopus 로고
    • A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100
    • Dominski Z, Yang XC, Purdy M, Wagner EJ, Marzluff WF. A CPSF-73 homologue is required for cell cycle progression but not cell growth and interacts with a protein having features of CPSF-100. Mol Cell Biol 2005, 25:1489-1500.
    • (2005) Mol Cell Biol , vol.25 , pp. 1489-1500
    • Dominski, Z.1    Yang, X.C.2    Purdy, M.3    Wagner, E.J.4    Marzluff, W.F.5
  • 99
    • 58149460414 scopus 로고    scopus 로고
    • Studies of the 5′ exonuclease and endonuclease activities of CPSF-73 in histone pre-mRNA processing
    • Yang XC, Sullivan KD, Marzluff WF, Dominski Z. Studies of the 5′ exonuclease and endonuclease activities of CPSF-73 in histone pre-mRNA processing. Mol Cell Biol 2009, 29:31-42.
    • (2009) Mol Cell Biol , vol.29 , pp. 31-42
    • Yang, X.C.1    Sullivan, K.D.2    Marzluff, W.F.3    Dominski, Z.4
  • 100
    • 0024094282 scopus 로고
    • Two proteins crosslinked to RNA containing the adenovirus L3 poly(A) site require the AAUAAA sequence for binding
    • Moore CL, Chen J, Whoriskey J. Two proteins crosslinked to RNA containing the adenovirus L3 poly(A) site require the AAUAAA sequence for binding. EMBO J 1988, 7:3159-3169.
    • (1988) EMBO J , vol.7 , pp. 3159-3169
    • Moore, C.L.1    Chen, J.2    Whoriskey, J.3
  • 101
    • 0036682601 scopus 로고    scopus 로고
    • Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination
    • Dichtl B, Blank D, Sadowski M, Hubner W, Weiser S, Keller W. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. EMBO J 2002, 21:4125-4135.
    • (2002) EMBO J , vol.21 , pp. 4125-4135
    • Dichtl, B.1    Blank, D.2    Sadowski, M.3    Hubner, W.4    Weiser, S.5    Keller, W.6
  • 102
    • 0034679803 scopus 로고    scopus 로고
    • Distinct roles of two Yth1p domains in 3′-end cleavage and polyadenylation of yeast pre-mRNAs
    • Barabino SM, Ohnacker M, Keller W. Distinct roles of two Yth1p domains in 3′-end cleavage and polyadenylation of yeast pre-mRNAs. EMBO J 2000, 19:3778-3787.
    • (2000) EMBO J , vol.19 , pp. 3778-3787
    • Barabino, S.M.1    Ohnacker, M.2    Keller, W.3
  • 103
    • 0033560753 scopus 로고    scopus 로고
    • Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery
    • Chen Z, Li Y, Krug RM. Influenza A virus NS1 protein targets poly(A)-binding protein II of the cellular 3′-end processing machinery. EMBO J 1999, 18:2273-2283.
    • (1999) EMBO J , vol.18 , pp. 2273-2283
    • Chen, Z.1    Li, Y.2    Krug, R.M.3
  • 104
    • 0025177037 scopus 로고
    • A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates
    • Wilusz J, Shenk T, Takagaki Y, Manley JL. A multicomponent complex is required for the AAUAAA-dependent cross-linking of a 64-kilodalton protein to polyadenylation substrates. Mol Cell Biol 1990, 10:1244-1248.
    • (1990) Mol Cell Biol , vol.10 , pp. 1244-1248
    • Wilusz, J.1    Shenk, T.2    Takagaki, Y.3    Manley, J.L.4
  • 105
    • 0028028266 scopus 로고
    • A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein
    • Takagaki Y, Manley JL. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 1994, 372:471-474.
    • (1994) Nature , vol.372 , pp. 471-474
    • Takagaki, Y.1    Manley, J.L.2
  • 106
    • 0027400410 scopus 로고
    • Mammalian poly(A)-binding protein II. Physical properties and binding to polynucleotides.
    • Wahle E, Lustig A, Jeno P, Maurer P. Mammalian poly(A)-binding protein II. Physical properties and binding to polynucleotides. J Biol Chem 1993, 268:2937-2945.
    • (1993) J Biol Chem , vol.268 , pp. 2937-2945
    • Wahle, E.1    Lustig, A.2    Jeno, P.3    Maurer, P.4
  • 107
    • 0032529163 scopus 로고    scopus 로고
    • The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms
    • Moreira A, Takagaki Y, Brackenridge S, Wollerton M, Manley JL, Proudfoot NJ. The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms. Genes Dev 1998, 12:2522-2534.
    • (1998) Genes Dev , vol.12 , pp. 2522-2534
    • Moreira, A.1    Takagaki, Y.2    Brackenridge, S.3    Wollerton, M.4    Manley, J.L.5    Proudfoot, N.J.6
  • 108
    • 0033984159 scopus 로고    scopus 로고
    • Complex protein interactions within the human polyadenylation machinery identify a novel component
    • Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol 2000, 20:1515-1525.
    • (2000) Mol Cell Biol , vol.20 , pp. 1515-1525
    • Takagaki, Y.1    Manley, J.L.2
  • 109
    • 0023867362 scopus 로고
    • A 64 kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif
    • Wilusz J, Shenk T. A 64 kd nuclear protein binds to RNA segments that include the AAUAAA polyadenylation motif. Cell 1988, 52:221-228.
    • (1988) Cell , vol.52 , pp. 221-228
    • Wilusz, J.1    Shenk, T.2
  • 110
    • 0026353286 scopus 로고
    • Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA
    • Gilmartin GM, Nevins JR. Molecular analyses of two poly(A) site-processing factors that determine the recognition and efficiency of cleavage of the pre-mRNA. Mol Cell Biol 1991, 11:2432-2438.
    • (1991) Mol Cell Biol , vol.11 , pp. 2432-2438
    • Gilmartin, G.M.1    Nevins, J.R.2
  • 111
    • 14844355104 scopus 로고    scopus 로고
    • Protein and RNA dynamics play key roles in determining the specific recognition of GU-rich polyadenylation regulatory elements by human Cstf-64 protein
    • Deka P, Rajan PK, Perez-Canadillas JM, Varani G. Protein and RNA dynamics play key roles in determining the specific recognition of GU-rich polyadenylation regulatory elements by human Cstf-64 protein. J Mol Biol 2005, 347:719-733.
    • (2005) J Mol Biol , vol.347 , pp. 719-733
    • Deka, P.1    Rajan, P.K.2    Perez-Canadillas, J.M.3    Varani, G.4
  • 112
    • 0030705196 scopus 로고    scopus 로고
    • RNA ligands selected by cleavage stimulation factor contain distinct sequence motifs that function as downstream elements in 3′-end processing of pre-mRNA
    • Beyer K, Dandekar T, Keller W. RNA ligands selected by cleavage stimulation factor contain distinct sequence motifs that function as downstream elements in 3′-end processing of pre-mRNA. J Biol Chem 1997, 272:26769-26779.
    • (1997) J Biol Chem , vol.272 , pp. 26769-26779
    • Beyer, K.1    Dandekar, T.2    Keller, W.3
  • 113
    • 0030920331 scopus 로고    scopus 로고
    • RNA recognition by the human polyadenylation factor CstF
    • Takagaki Y, Manley JL. RNA recognition by the human polyadenylation factor CstF. Mol Cell Biol 1997, 17:3907-3914.
    • (1997) Mol Cell Biol , vol.17 , pp. 3907-3914
    • Takagaki, Y.1    Manley, J.L.2
  • 114
    • 77952666620 scopus 로고    scopus 로고
    • The Prp19 WD40 domain contains a conserved protein interaction region essential for its function
    • Vander Kooi CW, Ren L, Xu P, Ohi MD, Gould KL, Chazin WJ. The Prp19 WD40 domain contains a conserved protein interaction region essential for its function. Structure 2010, 18:584-593.
    • (2010) Structure , vol.18 , pp. 584-593
    • Vander Kooi, C.W.1    Ren, L.2    Xu, P.3    Ohi, M.D.4    Gould, K.L.5    Chazin, W.J.6
  • 115
    • 19544386803 scopus 로고    scopus 로고
    • Structural and mechanistic insights into the interaction between Rho and mammalian Dia
    • Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghofer A. Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 2005, 435:513-518.
    • (2005) Nature , vol.435 , pp. 513-518
    • Rose, R.1    Weyand, M.2    Lammers, M.3    Ishizaki, T.4    Ahmadian, M.R.5    Wittinghofer, A.6
  • 116
    • 24344478208 scopus 로고    scopus 로고
    • RNA silencing suppressor p21 of Beet yellows virus forms an RNA binding octameric ring structure
    • Ye K, Patel DJ. RNA silencing suppressor p21 of Beet yellows virus forms an RNA binding octameric ring structure. Structure 2005, 13:1375-1384.
    • (2005) Structure , vol.13 , pp. 1375-1384
    • Ye, K.1    Patel, D.J.2
  • 117
    • 0034650189 scopus 로고    scopus 로고
    • The Drosophila homologue of the 64 kDa subunit of cleavage stimulation factor interacts with the 77 kDa subunit encoded by the suppressor of forked gene
    • Hatton LS, Eloranta JJ, Figueiredo LM, Takagaki Y, Manley JL, O'Hare K. The Drosophila homologue of the 64 kDa subunit of cleavage stimulation factor interacts with the 77 kDa subunit encoded by the suppressor of forked gene. Nucleic Acids Res 2000, 28:520-526.
    • (2000) Nucleic Acids Res , vol.28 , pp. 520-526
    • Hatton, L.S.1    Eloranta, J.J.2    Figueiredo, L.M.3    Takagaki, Y.4    Manley, J.L.5    O'Hare, K.6
  • 118
    • 73649107901 scopus 로고    scopus 로고
    • The hinge domain of the cleavage stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear localization, and polyadenylation
    • Hockert JA, Yeh HJ, MacDonald CC. The hinge domain of the cleavage stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear localization, and polyadenylation. J Biol Chem 2010, 285:695-704.
    • (2010) J Biol Chem , vol.285 , pp. 695-704
    • Hockert, J.A.1    Yeh, H.J.2    MacDonald, C.C.3
  • 119
    • 0028998441 scopus 로고
    • Tetratrico peptide repeat interactions: to TPR or not to TPR?
    • Lamb JR, Tugendreich S, Hieter P. Tetratrico peptide repeat interactions: to TPR or not to TPR? Trends Biochem Sci 1995, 20:257-259.
    • (1995) Trends Biochem Sci , vol.20 , pp. 257-259
    • Lamb, J.R.1    Tugendreich, S.2    Hieter, P.3
  • 120
    • 0031940245 scopus 로고    scopus 로고
    • The HAT helix, a repetitive motif implicated in RNA processing
    • Preker PJ, Keller W. The HAT helix, a repetitive motif implicated in RNA processing. Trends Biochem Sci 1998, 23:15-16.
    • (1998) Trends Biochem Sci , vol.23 , pp. 15-16
    • Preker, P.J.1    Keller, W.2
  • 121
    • 0033664345 scopus 로고    scopus 로고
    • Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5
    • Gatto GJ Jr, Geisbrecht BV, Gould SJ, Berg JM. Peroxisomal targeting signal-1 recognition by the TPR domains of human PEX5. Nat Struct Biol 2000, 7:1091-1095.
    • (2000) Nat Struct Biol , vol.7 , pp. 1091-1095
    • Gatto Jr., G.J.1    Geisbrecht, B.V.2    Gould, S.J.3    Berg, J.M.4
  • 122
    • 3042555841 scopus 로고    scopus 로고
    • Rna14-Rna15 assembly mediates the RNA-binding capability of Saccharomyces cerevisiae cleavage factor IA.
    • Noble CG, Walker PA, Calder LJ, Taylor IA. Rna14-Rna15 assembly mediates the RNA-binding capability of Saccharomyces cerevisiae cleavage factor IA. Nucleic Acids Res 2004, 32:3364-3375.
    • (2004) Nucleic Acids Res , vol.32 , pp. 3364-3375
    • Noble, C.G.1    Walker, P.A.2    Calder, L.J.3    Taylor, I.A.4
  • 123
    • 77951272127 scopus 로고    scopus 로고
    • The Arabidopsis ortholog of the 77 kDa subunit of the cleavage stimulatory factor (AtCstF-77) involved in mRNA polyadenylation is an RNA-binding protein
    • Bell SA, Hunt AG. The Arabidopsis ortholog of the 77 kDa subunit of the cleavage stimulatory factor (AtCstF-77) involved in mRNA polyadenylation is an RNA-binding protein. FEBS Lett 2010, 584:1449-1454.
    • (2010) FEBS Lett , vol.584 , pp. 1449-1454
    • Bell, S.A.1    Hunt, A.G.2
  • 124
    • 0027083119 scopus 로고
    • A human polyadenylation factor is a G protein β-subunit homologue
    • Takagaki Y, Manley JL. A human polyadenylation factor is a G protein β-subunit homologue. J Biol Chem 1992, 267:23471-23474.
    • (1992) J Biol Chem , vol.267 , pp. 23471-23474
    • Takagaki, Y.1    Manley, J.L.2
  • 125
    • 0035664074 scopus 로고    scopus 로고
    • WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases
    • Li D, Roberts R. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 2001, 58:2085-2097.
    • (2001) Cell Mol Life Sci , vol.58 , pp. 2085-2097
    • Li, D.1    Roberts, R.2
  • 127
    • 33746828109 scopus 로고    scopus 로고
    • Molecular recognition of histone H3 by the WD40 protein WDR5
    • Couture JF, Collazo E, Trievel RC. Molecular recognition of histone H3 by the WD40 protein WDR5. Nat Struct Mol Biol 2006, 13:698-703.
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 698-703
    • Couture, J.F.1    Collazo, E.2    Trievel, R.C.3
  • 128
    • 0035831030 scopus 로고    scopus 로고
    • The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression
    • Kleiman FE, Manley JL. The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression. Cell 2001, 104:743-753.
    • (2001) Cell , vol.104 , pp. 743-753
    • Kleiman, F.E.1    Manley, J.L.2
  • 129
    • 0001221269 scopus 로고    scopus 로고
    • Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50
    • Kleiman FE, Manley JL. Functional interaction of BRCA1-associated BARD1 with polyadenylation factor CstF-50. Science 1999, 285:1576-1579.
    • (1999) Science , vol.285 , pp. 1576-1579
    • Kleiman, F.E.1    Manley, J.L.2
  • 131
    • 13944281226 scopus 로고    scopus 로고
    • Molecular functions of BRCA1 in the DNA damage response
    • Scully R, Xie A, Nagaraju G. Molecular functions of BRCA1 in the DNA damage response. Cancer Biol Ther 2004, 3:521-527.
    • (2004) Cancer Biol Ther , vol.3 , pp. 521-527
    • Scully, R.1    Xie, A.2    Nagaraju, G.3
  • 132
    • 0034602833 scopus 로고    scopus 로고
    • The WD-repeat protein pfs2p bridges two essential factors within the yeast pre-mRNA 3′-end-processing complex
    • Ohnacker M, Barabino SM, Preker PJ, Keller W. The WD-repeat protein pfs2p bridges two essential factors within the yeast pre-mRNA 3′-end-processing complex. EMBO J 2000, 19:37-47.
    • (2000) EMBO J , vol.19 , pp. 37-47
    • Ohnacker, M.1    Barabino, S.M.2    Preker, P.J.3    Keller, W.4
  • 135
    • 0035933149 scopus 로고    scopus 로고
    • Five subunits are required for reconstitution of the cleavage and polyadenylation activities of Saccharomyces cerevisiae cleavage factor I
    • Gross S, Moore C. Five subunits are required for reconstitution of the cleavage and polyadenylation activities of Saccharomyces cerevisiae cleavage factor I. Proc Natl Acad Sci U S A 2001, 98:6080-6085.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 6080-6085
    • Gross, S.1    Moore, C.2
  • 136
    • 0033065488 scopus 로고    scopus 로고
    • Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3′-end formation
    • Valentini SR, Weiss VH, Silver PA. Arginine methylation and binding of Hrp1p to the efficiency element for mRNA 3′-end formation. RNA 1999, 5:272-280.
    • (1999) RNA , vol.5 , pp. 272-280
    • Valentini, S.R.1    Weiss, V.H.2    Silver, P.A.3
  • 137
    • 0032213290 scopus 로고    scopus 로고
    • A specific RNA-protein interaction at yeast polyadenylation efficiency elements
    • Chen S, Hyman LE. A specific RNA-protein interaction at yeast polyadenylation efficiency elements. Nucleic Acids Res 1998, 26:4965-4974.
    • (1998) Nucleic Acids Res , vol.26 , pp. 4965-4974
    • Chen, S.1    Hyman, L.E.2
  • 138
    • 0035162071 scopus 로고    scopus 로고
    • Rna15 interaction with the A-rich yeast polyadenylation signal is an essential step in mRNA 3′-end formation
    • Gross S, Moore CL. Rna15 interaction with the A-rich yeast polyadenylation signal is an essential step in mRNA 3′-end formation. Mol Cell Biol 2001, 21:8045-8055.
    • (2001) Mol Cell Biol , vol.21 , pp. 8045-8055
    • Gross, S.1    Moore, C.L.2
  • 139
    • 33846388539 scopus 로고    scopus 로고
    • Alternative 3′ pre-mRNA processing in Saccharomyces cerevisiae is modulated by Nab4/Hrp1 in vivo
    • Kim Guisbert KS, Li H, Guthrie C. Alternative 3′ pre-mRNA processing in Saccharomyces cerevisiae is modulated by Nab4/Hrp1 in vivo. PLoS Biol 2007, 5:e6.
    • (2007) PLoS Biol , vol.5
    • Kim Guisbert, K.S.1    Li, H.2    Guthrie, C.3
  • 140
    • 84857746060 scopus 로고    scopus 로고
    • The hunt for the 3' endonuclease
    • Dominski Z. The hunt for the 3' endonuclease. WIREs RNA 2010, 1:325–340.
    • (2010) WIREs RNA , vol.1 , pp. 325-340
    • Dominski, Z.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.