메뉴 건너뛰기




Volumn 2, Issue 3, 2011, Pages 321-335

Pre-mRNA 3′-end processing complex assembly and function

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE; CLEAVAGE AND POLYADENYLATION SPECIFICITY FACTOR; MESSENGER RNA; POLYADENYLIC ACID; POLYADENYLIC ACID BINDING PROTEIN; RNA POLYMERASE II; DNA DIRECTED RNA POLYMERASE; POLYNUCLEOTIDE ADENYLYLTRANSFERASE; RNA BINDING PROTEIN; RNA PRECURSOR;

EID: 84857761249     PISSN: 17577004     EISSN: 17577012     Source Type: Journal    
DOI: 10.1002/wrna.54     Document Type: Review
Times cited : (126)

References (116)
  • 1
    • 0030784958 scopus 로고    scopus 로고
    • Mechanism and regulation of mRNA polyadenylation.
    • Colgan DF, Manley JL. Mechanism and regulation of mRNA polyadenylation. Genes Dev 1997, 11: 2755-2766.
    • (1997) Genes Dev , vol.11 , pp. 2755-2766
    • Colgan, D.F.1    Manley, J.L.2
  • 2
    • 0033059981 scopus 로고    scopus 로고
    • Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis.
    • Zhao J, Hyman L, Moore C. Formation of mRNA 3′ ends in eukaryotes: mechanism, regulation, and interrelationships with other steps in mRNA synthesis. Microbiol Mol Biol Rev 1999, 63:405-445.
    • (1999) Microbiol Mol Biol Rev , vol.63 , pp. 405-445
    • Zhao, J.1    Hyman, L.2    Moore, C.3
  • 3
    • 60149110358 scopus 로고    scopus 로고
    • Pre-mRNA processing reaches back to transcription and ahead to translation.
    • Moore MJ, Proudfoot NJ. Pre-mRNA processing reaches back to transcription and ahead to translation. Cell 2009, 136:688-700.
    • (2009) Cell , vol.136 , pp. 688-700
    • Moore, M.J.1    Proudfoot, N.J.2
  • 4
    • 77953284100 scopus 로고    scopus 로고
    • Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation.
    • Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3′ end processing regulation. Nucleic Acids Res 2010, 38:2757-2774.
    • (2010) Nucleic Acids Res , vol.38 , pp. 2757-2774
    • Millevoi, S.1    Vagner, S.2
  • 5
    • 13744254695 scopus 로고    scopus 로고
    • A large-scale analysis of mRNA polyadenylation of human and mouse genes.
    • Tian B, Hu J, Zhang H, Lutz CS. A large-scale analysis of mRNA polyadenylation of human and mouse genes. Nucleic Acids Res 2005, 33:201-212.
    • (2005) Nucleic Acids Res , vol.33 , pp. 201-212
    • Tian, B.1    Hu, J.2    Zhang, H.3    Lutz, C.S.4
  • 6
    • 58149144383 scopus 로고    scopus 로고
    • Alternative polyadenylation: a twist on mRNA 3′ end formation.
    • Lutz CS. Alternative polyadenylation: a twist on mRNA 3′ end formation. ACS Chem Biol 2008, 3: 609-617.
    • (2008) ACS Chem Biol , vol.3 , pp. 609-617
    • Lutz, C.S.1
  • 7
    • 46249092601 scopus 로고    scopus 로고
    • Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites.
    • Sandberg R, Neilson JR, Sarma A, Sharp PA, Burge CB. Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 2008, 320: 1643-1647.
    • (2008) Science , vol.320 , pp. 1643-1647
    • Sandberg, R.1    Neilson, J.R.2    Sarma, A.3    Sharp, P.A.4    Burge, C.B.5
  • 9
    • 68749113985 scopus 로고    scopus 로고
    • Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells.
    • Mayr C, Bartel DP. Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 2009, 138:673-684.
    • (2009) Cell , vol.138 , pp. 673-684
    • Mayr, C.1    Bartel, D.P.2
  • 10
    • 77949538391 scopus 로고    scopus 로고
    • Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types.
    • Ji Z, Tian B. Reprogramming of 3′ untranslated regions of mRNAs by alternative polyadenylation in generation of pluripotent stem cells from different cell types. PLoS One 2009, 4:e8419.
    • (2009) PLoS One , vol.4
    • Ji, Z.1    Tian, B.2
  • 11
    • 66049104920 scopus 로고    scopus 로고
    • Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development.
    • Ji Z, Lee JY, Pan Z, Jiang B, Tian B. Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci U S A 2009, 106: 7028-7033.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 7028-7033
    • Ji, Z.1    Lee, J.Y.2    Pan, Z.3    Jiang, B.4    Tian, B.5
  • 12
    • 38949111543 scopus 로고    scopus 로고
    • 3′ end mRNA processing: molecular mechanisms and implications for health and disease.
    • Danckwardt S, Hentze MW, Kulozik AE. 3′ end mRNA processing: molecular mechanisms and implications for health and disease. EMBO J 2008, 27: 482-498.
    • (2008) EMBO J , vol.27 , pp. 482-498
    • Danckwardt, S.1    Hentze, M.W.2    Kulozik, A.E.3
  • 13
    • 42449084129 scopus 로고    scopus 로고
    • Protein factors in pre-mRNA 3′-end processing.
    • Mandel CR, Bai Y, Tong L. Protein factors in pre-mRNA 3′-end processing. Cell Mol Life Sci 2008, 65: 1099-1122.
    • (2008) Cell Mol Life Sci , vol.65 , pp. 1099-1122
    • Mandel, C.R.1    Bai, Y.2    Tong, L.3
  • 15
    • 77950587742 scopus 로고    scopus 로고
    • An up-close look at the pre-mRNA 3′-end processing complex.
    • Shi Y, Chan S, Martinez-Santibanez G. An up-close look at the pre-mRNA 3′-end processing complex. RNA Biol 2009, 6:522-525.
    • (2009) RNA Biol , vol.6 , pp. 522-525
    • Shi, Y.1    Chan, S.2    Martinez-Santibanez, G.3
  • 16
    • 60349104299 scopus 로고    scopus 로고
    • The spliceosome: design principles of a dynamic RNP machine.
    • Wahl MC, Will CL, Luhrmann R. The spliceosome: design principles of a dynamic RNP machine. Cell 2009, 136:701-718.
    • (2009) Cell , vol.136 , pp. 701-718
    • Wahl, M.C.1    Will, C.L.2    Luhrmann, R.3
  • 17
    • 77951962379 scopus 로고    scopus 로고
    • Polyadenylation: alternative lifestyles of the A-rich (and famous?)
    • Dickson AM, Wilusz J. Polyadenylation: alternative lifestyles of the A-rich (and famous?) EMBO J 2010, 29:1473-1474.
    • (2010) EMBO J , vol.29 , pp. 1473-1474
    • Dickson, A.M.1    Wilusz, J.2
  • 18
    • 0029120391 scopus 로고
    • Cleavage site determinants in the mammalian polyadenylation signal.
    • Chen F, MacDonald CC, Wilusz J. Cleavage site determinants in the mammalian polyadenylation signal. Nucleic Acids Res 1995, 23:2614-2620.
    • (1995) Nucleic Acids Res , vol.23 , pp. 2614-2620
    • Chen, F.1    MacDonald, C.C.2    Wilusz, J.3
  • 19
    • 0035870688 scopus 로고    scopus 로고
    • Heterogeneity in polyadenylation cleavage sites in mammalian mRNA sequences: implications for SAGE analysis.
    • Pauws E, van Kampen AH, van de Graaf SA, de Vijlder JJ, Ris-Stalpers C. Heterogeneity in polyadenylation cleavage sites in mammalian mRNA sequences: implications for SAGE analysis. Nucleic Acids Res 2001, 29:1690-1694.
    • (2001) Nucleic Acids Res , vol.29 , pp. 1690-1694
    • Pauws, E.1    van Kampen, A.H.2    van de Graaf, S.A.3    de Vijlder, J.J.4    Ris-Stalpers, C.5
  • 20
    • 25844497003 scopus 로고    scopus 로고
    • Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation.
    • Hu J, Lutz CS, Wilusz J, Tian B. Bioinformatic identification of candidate cis-regulatory elements involved in human mRNA polyadenylation. RNA 2005, 11:1485-1493.
    • (2005) RNA , vol.11 , pp. 1485-1493
    • Hu, J.1    Lutz, C.S.2    Wilusz, J.3    Tian, B.4
  • 21
    • 0037335613 scopus 로고    scopus 로고
    • Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures.
    • Zarudnaya MI, Kolomiets IM, Potyahaylo AL, Hovorun DM. Downstream elements of mammalian pre-mRNA polyadenylation signals: primary, secondary and higher-order structures. Nucleic Acids Res 2003, 31:1375-1386.
    • (2003) Nucleic Acids Res , vol.31 , pp. 1375-1386
    • Zarudnaya, M.I.1    Kolomiets, I.M.2    Potyahaylo, A.L.3    Hovorun, D.M.4
  • 22
    • 22344439263 scopus 로고    scopus 로고
    • Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition.
    • Venkataraman K, Brown KM, Gilmartin GM. Analysis of a noncanonical poly(A) site reveals a tripartite mechanism for vertebrate poly(A) site recognition. Genes Dev 2005, 19:1315-1327.
    • (2005) Genes Dev , vol.19 , pp. 1315-1327
    • Venkataraman, K.1    Brown, K.M.2    Gilmartin, G.M.3
  • 23
    • 77951977370 scopus 로고    scopus 로고
    • A functional human Poly(A) site requires only a potent DSE and an A-rich upstream sequence.
    • Nunes NM, Li W, Tian B, Furger A. A functional human Poly(A) site requires only a potent DSE and an A-rich upstream sequence. EMBO J 2010, 29: 1523-1536.
    • (2010) EMBO J , vol.29 , pp. 1523-1536
    • Nunes, N.M.1    Li, W.2    Tian, B.3    Furger, A.4
  • 24
    • 0029742241 scopus 로고    scopus 로고
    • RNA structure is a critical determinant of poly(A) site recognition by cleavage and polyadenylation specificity factor.
    • Graveley BR, Fleming ES, Gilmartin GM. RNA structure is a critical determinant of poly(A) site recognition by cleavage and polyadenylation specificity factor. Mol Cell Biol 1996, 16:4942-4951.
    • (1996) Mol Cell Biol , vol.16 , pp. 4942-4951
    • Graveley, B.R.1    Fleming, E.S.2    Gilmartin, G.M.3
  • 25
    • 0021473965 scopus 로고
    • Sequences on the 3′ side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site.
    • Sadofsky M, Alwine JC. Sequences on the 3′ side of hexanucleotide AAUAAA affect efficiency of cleavage at the polyadenylation site. Mol Cell Biol 1984, 4:1460-1468.
    • (1984) Mol Cell Biol , vol.4 , pp. 1460-1468
    • Sadofsky, M.1    Alwine, J.C.2
  • 26
    • 0034068908 scopus 로고    scopus 로고
    • Functionally significant secondary structure of the simian virus 40 late polyadenylation signal.
    • Hans H, Alwine JC. Functionally significant secondary structure of the simian virus 40 late polyadenylation signal. Mol Cell Biol 2000, 20:2926-2932.
    • (2000) Mol Cell Biol , vol.20 , pp. 2926-2932
    • Hans, H.1    Alwine, J.C.2
  • 27
    • 0029060131 scopus 로고
    • The secondary structure of the adenovirus-2 L4 polyadenylation domain: evidence for a hairpin structure exposing the AAUAAA signal in its loop.
    • Sittler A, Gallinaro H, Jacob M. The secondary structure of the adenovirus-2 L4 polyadenylation domain: evidence for a hairpin structure exposing the AAUAAA signal in its loop. J Mol Biol 1995, 248:525-540.
    • (1995) J Mol Biol , vol.248 , pp. 525-540
    • Sittler, A.1    Gallinaro, H.2    Jacob, M.3
  • 28
    • 0038487811 scopus 로고    scopus 로고
    • Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression.
    • Mangus DA, Evans MC, Jacobson A. Poly(A)-binding proteins: multifunctional scaffolds for the post-transcriptional control of gene expression. Genome Biol 2003, 4:223.
    • (2003) Genome Biol , vol.4 , pp. 223
    • Mangus, D.A.1    Evans, M.C.2    Jacobson, A.3
  • 29
    • 0026694636 scopus 로고
    • Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus.
    • Murthy KG, Manley JL. Characterization of the multisubunit cleavage-polyadenylation specificity factor from calf thymus. J Biol Chem 1992, 267: 14804-14811.
    • (1992) J Biol Chem , vol.267 , pp. 14804-14811
    • Murthy, K.G.1    Manley, J.L.2
  • 30
    • 0026009674 scopus 로고
    • Purification of the cleavage and polyadenylation factor involved in the 3′-processing of messenger RNA precursors.
    • Bienroth S, Wahle E, Suter-Crazzolara C, Keller W. Purification of the cleavage and polyadenylation factor involved in the 3′-processing of messenger RNA precursors. J Biol Chem 1991, 266:19768-19776.
    • (1991) J Biol Chem , vol.266 , pp. 19768-19776
    • Bienroth, S.1    Wahle, E.2    Suter-Crazzolara, C.3    Keller, W.4
  • 31
    • 0033984159 scopus 로고    scopus 로고
    • Complex protein interactions within the human polyadenylation machinery identify a novel component.
    • Takagaki Y, Manley JL. Complex protein interactions within the human polyadenylation machinery identify a novel component. Mol Cell Biol 2000, 20: 1515-1525.
    • (2000) Mol Cell Biol , vol.20 , pp. 1515-1525
    • Takagaki, Y.1    Manley, J.L.2
  • 32
    • 1442313922 scopus 로고    scopus 로고
    • Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase.
    • Kaufmann I, Martin G, Friedlein A, Langen H, Keller W. Human Fip1 is a subunit of CPSF that binds to U-rich RNA elements and stimulates poly(A) polymerase. EMBO J 2004, 23:616-626.
    • (2004) EMBO J , vol.23 , pp. 616-626
    • Kaufmann, I.1    Martin, G.2    Friedlein, A.3    Langen, H.4    Keller, W.5
  • 33
    • 0026041206 scopus 로고
    • Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3′ processing signal AAUAAA.
    • Keller W, Bienroth S, Lang KM, Christofori G. Cleavage and polyadenylation factor CPF specifically interacts with the pre-mRNA 3′ processing signal AAUAAA. EMBO J 1991, 10:4241-4249.
    • (1991) EMBO J , vol.10 , pp. 4241-4249
    • Keller, W.1    Bienroth, S.2    Lang, K.M.3    Christofori, G.4
  • 34
    • 0025029405 scopus 로고
    • Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro.
    • Sheets MD, Ogg SC, Wickens MP. Point mutations in AAUAAA and the poly (A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res 1990, 18:5799-5805.
    • (1990) Nucleic Acids Res , vol.18 , pp. 5799-5805
    • Sheets, M.D.1    Ogg, S.C.2    Wickens, M.P.3
  • 35
    • 0024094282 scopus 로고
    • Two proteins crosslinked to RNA containing the adenovirus L3 poly(A) site require the AAUAAA sequence for binding.
    • Moore CL, Chen J, Whoriskey J. Two proteins crosslinked to RNA containing the adenovirus L3 poly(A) site require the AAUAAA sequence for binding. EMBO J 1988, 7:3159-3169.
    • (1988) EMBO J , vol.7 , pp. 3159-3169
    • Moore, C.L.1    Chen, J.2    Whoriskey, J.3
  • 36
    • 0028789410 scopus 로고
    • The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation.
    • Murthy KG, Manley JL. The 160-kD subunit of human cleavage-polyadenylation specificity factor coordinates pre-mRNA 3′-end formation. Genes Dev 1995, 9:2672-2683.
    • (1995) Genes Dev , vol.9 , pp. 2672-2683
    • Murthy, K.G.1    Manley, J.L.2
  • 37
    • 0036682601 scopus 로고    scopus 로고
    • Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination.
    • Dichtl B, Blank D, Sadowski M, Hubner W, Weiser S, Keller W. Yhh1p/Cft1p directly links poly(A) site recognition and RNA polymerase II transcription termination. EMBO J 2002, 21:4125-4135.
    • (2002) EMBO J , vol.21 , pp. 4125-4135
    • Dichtl, B.1    Blank, D.2    Sadowski, M.3    Hubner, W.4    Weiser, S.5    Keller, W.6
  • 38
    • 1842329727 scopus 로고    scopus 로고
    • The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins.
    • Barabino SM, Hubner W, Jenny A, Minvielle-Sebastia L, Keller W. The 30-kD subunit of mammalian cleavage and polyadenylation specificity factor and its yeast homolog are RNA-binding zinc finger proteins. Genes Dev 1997, 11:1703-1716.
    • (1997) Genes Dev , vol.11 , pp. 1703-1716
    • Barabino, S.M.1    Hubner, W.2    Jenny, A.3    Minvielle-Sebastia, L.4    Keller, W.5
  • 39
    • 65549149976 scopus 로고    scopus 로고
    • A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs.
    • Sullivan KD, Steiniger M, Marzluff WF. A core complex of CPSF73, CPSF100, and Symplekin may form two different cleavage factors for processing of poly(A) and histone mRNAs. Mol Cell 2009, 34:322-332.
    • (2009) Mol Cell , vol.34 , pp. 322-332
    • Sullivan, K.D.1    Steiniger, M.2    Marzluff, W.F.3
  • 40
    • 0034602833 scopus 로고    scopus 로고
    • The WD-repeat protein pfs2p bridges two essential factors within the yeast pre-mRNA 3′-end-processing complex.
    • Ohnacker M, Barabino SM, Preker PJ, Keller W. The WD-repeat protein pfs2p bridges two essential factors within the yeast pre-mRNA 3′-end-processing complex. EMBO J 2000, 19:37-47.
    • (2000) EMBO J , vol.19 , pp. 37-47
    • Ohnacker, M.1    Barabino, S.M.2    Preker, P.J.3    Keller, W.4
  • 41
    • 0032086357 scopus 로고    scopus 로고
    • Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′ end formation of cellular pre-mRNAs.
    • Nemeroff ME, Barabino SM, Li Y, Keller W, Krug RM. Influenza virus NS1 protein interacts with the cellular 30 kDa subunit of CPSF and inhibits 3′ end formation of cellular pre-mRNAs. Mol Cell 1998, 1: 991-1000.
    • (1998) Mol Cell , vol.1 , pp. 991-1000
    • Nemeroff, M.E.1    Barabino, S.M.2    Li, Y.3    Keller, W.4    Krug, R.M.5
  • 42
    • 1642409197 scopus 로고    scopus 로고
    • HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin.
    • Xing H, Mayhew CN, Cullen KE, Park-Sarge OK, Sarge KD. HSF1 modulation of Hsp70 mRNA polyadenylation via interaction with symplekin. J Biol Chem 2004, 279:10551-10555.
    • (2004) J Biol Chem , vol.279 , pp. 10551-10555
    • Xing, H.1    Mayhew, C.N.2    Cullen, K.E.3    Park-Sarge, O.K.4    Sarge, K.D.5
  • 43
    • 0038343397 scopus 로고    scopus 로고
    • FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition.
    • Simpson GG, Dijkwel PP, Quesada V, Henderson I, Dean C. FY is an RNA 3′ end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 2003, 113:777-787.
    • (2003) Cell , vol.113 , pp. 777-787
    • Simpson, G.G.1    Dijkwel, P.P.2    Quesada, V.3    Henderson, I.4    Dean, C.5
  • 44
    • 1642488290 scopus 로고    scopus 로고
    • Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease.
    • Ryan K, Calvo O, Manley JL. Evidence that polyadenylation factor CPSF-73 is the mRNA 3′ processing endonuclease. RNA 2004, 10:565-573.
    • (2004) RNA , vol.10 , pp. 565-573
    • Ryan, K.1    Calvo, O.2    Manley, J.L.3
  • 46
    • 0037102538 scopus 로고    scopus 로고
    • Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family.
    • Callebaut I, Moshous D, Mornon JP, de Villartay JP. Metallo-beta-lactamase fold within nucleic acids processing enzymes: the beta-CASP family. Nucleic Acids Res 2002, 30:3592-3601.
    • (2002) Nucleic Acids Res , vol.30 , pp. 3592-3601
    • Callebaut, I.1    Moshous, D.2    Mornon, J.P.3    de Villartay, J.P.4
  • 47
    • 26244452759 scopus 로고    scopus 로고
    • The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing.
    • Dominski Z, Yang XC, Marzluff WF. The polyadenylation factor CPSF-73 is involved in histone-pre-mRNA processing. Cell 2005, 123:37-48.
    • (2005) Cell , vol.123 , pp. 37-48
    • Dominski, Z.1    Yang, X.C.2    Marzluff, W.F.3
  • 48
    • 54149091257 scopus 로고    scopus 로고
    • Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail.
    • Marzluff WF, Wagner EJ, Duronio RJ. Metabolism and regulation of canonical histone mRNAs: life without a poly(A) tail. Nat Rev Genet 2008, 9:843-854.
    • (2008) Nat Rev Genet , vol.9 , pp. 843-854
    • Marzluff, W.F.1    Wagner, E.J.2    Duronio, R.J.3
  • 49
    • 26944459450 scopus 로고    scopus 로고
    • Symplekin and multiple other polyadenylation factors participate in 3′-end maturation of histone mRNAs.
    • Kolev NG, Steitz JA. Symplekin and multiple other polyadenylation factors participate in 3′-end maturation of histone mRNAs. Genes Dev 2005, 19: 2583-2592.
    • (2005) Genes Dev , vol.19 , pp. 2583-2592
    • Kolev, N.G.1    Steitz, J.A.2
  • 50
    • 58149460414 scopus 로고    scopus 로고
    • Studies of the 5′ exonuclease and endonuclease activities of CPSF-73 in histone pre-mRNA processing.
    • Yang XC, Sullivan KD, Marzluff WF, Dominski Z. Studies of the 5′ exonuclease and endonuclease activities of CPSF-73 in histone pre-mRNA processing. Mol Cell Biol 2009, 29:31-42.
    • (2009) Mol Cell Biol , vol.29 , pp. 31-42
    • Yang, X.C.1    Sullivan, K.D.2    Marzluff, W.F.3    Dominski, Z.4
  • 51
    • 0025695149 scopus 로고
    • A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs.
    • Takagaki Y, Manley JL, MacDonald CC, Wilusz J, Shenk T. A multisubunit factor, CstF, is required for polyadenylation of mammalian pre-mRNAs. Genes Dev 1990, 4:2112-2120.
    • (1990) Genes Dev , vol.4 , pp. 2112-2120
    • Takagaki, Y.1    Manley, J.L.2    MacDonald, C.C.3    Wilusz, J.4    Shenk, T.5
  • 53
    • 33947202065 scopus 로고    scopus 로고
    • Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors.
    • Bai Y, Auperin TC, Chou CY, Chang GG, Manley JL, Tong L. Crystal structure of murine CstF-77: dimeric association and implications for polyadenylation of mRNA precursors. Mol Cell 2007, 25: 863-875.
    • (2007) Mol Cell , vol.25 , pp. 863-875
    • Bai, Y.1    Auperin, T.C.2    Chou, C.Y.3    Chang, G.G.4    Manley, J.L.5    Tong, L.6
  • 54
    • 34547839747 scopus 로고    scopus 로고
    • The structure of the CstF-77 homodimer provides insights into CstF assembly.
    • Legrand P, Pinaud N, Minvielle-Sebastia L, Fribourg S. The structure of the CstF-77 homodimer provides insights into CstF assembly. Nucleic Acids Res 2007, 35:4515-4522.
    • (2007) Nucleic Acids Res , vol.35 , pp. 4515-4522
    • Legrand, P.1    Pinaud, N.2    Minvielle-Sebastia, L.3    Fribourg, S.4
  • 55
    • 0030920331 scopus 로고    scopus 로고
    • RNA recognition by the human polyadenylation factor CstF.
    • Takagaki Y, Manley JL. RNA recognition by the human polyadenylation factor CstF. Mol Cell Biol 1997, 17:3907-3914.
    • (1997) Mol Cell Biol , vol.17 , pp. 3907-3914
    • Takagaki, Y.1    Manley, J.L.2
  • 56
    • 33846861519 scopus 로고    scopus 로고
    • Polyadenylation proteins CstF-64 and tauCstF-64 exhibit differential binding affinities for RNA polymers.
    • Monarez RR, MacDonald CC, Dass B. Polyadenylation proteins CstF-64 and tauCstF-64 exhibit differential binding affinities for RNA polymers. Biochem J 2007, 401:651-658.
    • (2007) Biochem J , vol.401 , pp. 651-658
    • Monarez, R.R.1    MacDonald, C.C.2    Dass, B.3
  • 58
    • 0028028266 scopus 로고
    • A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein.
    • Takagaki Y, Manley JL. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature 1994, 372:471-474.
    • (1994) Nature , vol.372 , pp. 471-474
    • Takagaki, Y.1    Manley, J.L.2
  • 59
    • 3042555841 scopus 로고    scopus 로고
    • Rna14-Rna15 assembly mediates the RNA-binding capability of Saccharomyces cerevisiae cleavage factor IA.
    • Noble CG, Walker PA, Calder LJ, Taylor IA. Rna14-Rna15 assembly mediates the RNA-binding capability of Saccharomyces cerevisiae cleavage factor IA. Nucleic Acids Res 2004, 32:3364-3375.
    • (2004) Nucleic Acids Res , vol.32 , pp. 3364-3375
    • Noble, C.G.1    Walker, P.A.2    Calder, L.J.3    Taylor, I.A.4
  • 60
    • 73649107901 scopus 로고    scopus 로고
    • The hinge domain of the cleavage stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear localization, and polyadenylation.
    • Hockert JA, Yeh HJ, MacDonald CC. The hinge domain of the cleavage stimulation factor protein CstF-64 is essential for CstF-77 interaction, nuclear localization, and polyadenylation. J Biol Chem 285: 695-704.
    • J Biol Chem , vol.285 , pp. 695-704
    • Hockert, J.A.1    Yeh, H.J.2    MacDonald, C.C.3
  • 61
    • 33847327963 scopus 로고    scopus 로고
    • The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3′-end processing.
    • Qu X, Perez-Canadillas JM, Agrawal S, De Baecke J, Cheng H, Varani G, Moore C. The C-terminal domains of vertebrate CstF-64 and its yeast orthologue Rna15 form a new structure critical for mRNA 3′-end processing. J Biol Chem 2007, 282:2101-2115.
    • (2007) J Biol Chem , vol.282 , pp. 2101-2115
    • Qu, X.1    Canadillas, J.M.2    Agrawal, S.3    De Baecke, J.4    Cheng, H.5    Varani, G.6    Moore, C.7
  • 62
    • 0035947082 scopus 로고    scopus 로고
    • Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination.
    • Calvo O, Manley JL. Evolutionarily conserved interaction between CstF-64 and PC4 links transcription, polyadenylation, and termination. Mol Cell 2001, 7:1013-1023.
    • (2001) Mol Cell , vol.7 , pp. 1013-1023
    • Calvo, O.1    Manley, J.L.2
  • 64
    • 0035831030 scopus 로고    scopus 로고
    • The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression.
    • Kleiman FE, Manley JL. The BARD1-CstF-50 interaction links mRNA 3′ end formation to DNA damage and tumor suppression. Cell 2001, 104:743-753.
    • (2001) Cell , vol.104 , pp. 743-753
    • Kleiman, F.E.1    Manley, J.L.2
  • 66
    • 77953454014 scopus 로고    scopus 로고
    • Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3′ processing.
    • Yang Q, Gilmartin GM, Doublie S. Structural basis of UGUA recognition by the Nudix protein CFI(m)25 and implications for a regulatory role in mRNA 3′ processing. Proc Natl Acad Sci U S A 2010, 107: 10062-10067.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 10062-10067
    • Yang, Q.1    Gilmartin, G.M.2    Doublie, S.3
  • 67
    • 0029991323 scopus 로고    scopus 로고
    • Purification and characterization of human cleavage factor Im involved in the 3′ end processing of messenger RNA precursors.
    • Ruegsegger U, Beyer K, Keller W. Purification and characterization of human cleavage factor Im involved in the 3′ end processing of messenger RNA precursors. J Biol Chem 1996, 271:6107-6113.
    • (1996) J Biol Chem , vol.271 , pp. 6107-6113
    • Ruegsegger, U.1    Beyer, K.2    Keller, W.3
  • 68
    • 0347416974 scopus 로고    scopus 로고
    • A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im.
    • Brown KM, Gilmartin GM. A mechanism for the regulation of pre-mRNA 3′ processing by human cleavage factor Im. Mol Cell 2003, 12:1467-1476.
    • (2003) Mol Cell , vol.12 , pp. 1467-1476
    • Brown, K.M.1    Gilmartin, G.M.2
  • 69
    • 4143151952 scopus 로고    scopus 로고
    • Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization.
    • Dettwiler S, Aringhieri C, Cardinale S, Keller W, Barabino SM. Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. J Biol Chem 2004, 279:35788-35797.
    • (2004) J Biol Chem , vol.279 , pp. 35788-35797
    • Dettwiler, S.1    Aringhieri, C.2    Cardinale, S.3    Keller, W.4    Barabino, S.M.5
  • 70
    • 0031610366 scopus 로고    scopus 로고
    • Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits.
    • Ruegsegger U, Blank D, Keller W. Human pre-mRNA cleavage factor Im is related to spliceosomal SR proteins and can be reconstituted in vitro from recombinant subunits. Mol Cell 1998, 1:243-253.
    • (1998) Mol Cell , vol.1 , pp. 243-253
    • Ruegsegger, U.1    Blank, D.2    Keller, W.3
  • 71
    • 33845675377 scopus 로고    scopus 로고
    • Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3′-UTRs.
    • Kubo T, Wada T, Yamaguchi Y, Shimizu A, Handa H. Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3′-UTRs. Nucleic Acids Res 2006, 34:6264-6271.
    • (2006) Nucleic Acids Res , vol.34 , pp. 6264-6271
    • Kubo, T.1    Wada, T.2    Yamaguchi, Y.3    Shimizu, A.4    Handa, H.5
  • 72
    • 67649671966 scopus 로고    scopus 로고
    • SR proteins in vertical integration of gene expression from transcription to RNA processing to translation.
    • Zhong XY, Wang P, Han J, Rosenfeld MG, Fu XD. SR proteins in vertical integration of gene expression from transcription to RNA processing to translation. Mol Cell 2009, 35:1-10.
    • (2009) Mol Cell , vol.35 , pp. 1-10
    • Zhong, X.Y.1    Wang, P.2    Han, J.3    Rosenfeld, M.G.4    Fu, X.D.5
  • 73
    • 33750200773 scopus 로고    scopus 로고
    • An interaction between U2AF 65 and CF I(m) links the splicing and 3′ end processing machineries.
    • Millevoi S, Loulergue C, Dettwiler S, Karaa SZ, Keller W, Antoniou M, Vagner S. An interaction between U2AF 65 and CF I(m) links the splicing and 3′ end processing machineries. EMBO J 2006, 25:4854-4864.
    • (2006) EMBO J , vol.25 , pp. 4854-4864
    • Millevoi, S.1    Loulergue, C.2    Dettwiler, S.3    Karaa, S.Z.4    Keller, W.5    Antoniou, M.6    Vagner, S.7
  • 74
    • 0037068447 scopus 로고    scopus 로고
    • Comprehensive proteomic analysis of the human spliceosome.
    • Zhou Z, Licklider LJ, Gygi SP, Reed R. Comprehensive proteomic analysis of the human spliceosome. Nature 2002, 419:182-185.
    • (2002) Nature , vol.419 , pp. 182-185
    • Zhou, Z.1    Licklider, L.J.2    Gygi, S.P.3    Reed, R.4
  • 75
    • 2342505693 scopus 로고    scopus 로고
    • New perspectives on connecting messenger RNA 3′ end formation to transcription.
    • Proudfoot N. New perspectives on connecting messenger RNA 3′ end formation to transcription. Curr Opin Cell Biol 2004, 16:272-278.
    • (2004) Curr Opin Cell Biol , vol.16 , pp. 272-278
    • Proudfoot, N.1
  • 76
    • 22344443368 scopus 로고    scopus 로고
    • CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11.
    • Zhang Z, Fu J, Gilmour DS. CTD-dependent dismantling of the RNA polymerase II elongation complex by the pre-mRNA 3′-end processing factor, Pcf11. Genes Dev 2005, 19:1572-1580.
    • (2005) Genes Dev , vol.19 , pp. 1572-1580
    • Zhang, Z.1    Fu, J.2    Gilmour, D.S.3
  • 77
    • 58649121693 scopus 로고    scopus 로고
    • Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3′ end processing factor Pcf11.
    • Johnson SA, Cubberley G, Bentley DL. Cotranscriptional recruitment of the mRNA export factor Yra1 by direct interaction with the 3′ end processing factor Pcf11. Mol Cell 2009, 33:215-226.
    • (2009) Mol Cell , vol.33 , pp. 215-226
    • Johnson, S.A.1    Cubberley, G.2    Bentley, D.L.3
  • 78
    • 34248563036 scopus 로고    scopus 로고
    • The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs.
    • Weitzer S, Martinez J. The human RNA kinase hClp1 is active on 3′ transfer RNA exons and short interfering RNAs. Nature 2007, 447:222-226.
    • (2007) Nature , vol.447 , pp. 222-226
    • Weitzer, S.1    Martinez, J.2
  • 79
    • 2042479408 scopus 로고    scopus 로고
    • Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation.
    • Paushkin SV, Patel M, Furia BS, Peltz SW, Trotta CR. Identification of a human endonuclease complex reveals a link between tRNA splicing and pre-mRNA 3′ end formation. Cell 2004, 117:311-321.
    • (2004) Cell , vol.117 , pp. 311-321
    • Paushkin, S.V.1    Patel, M.2    Furia, B.S.3    Peltz, S.W.4    Trotta, C.R.5
  • 80
    • 50649088948 scopus 로고    scopus 로고
    • Human RNA 5′-kinase (hClp1) can function as a tRNA splicing enzyme in vivo.
    • Ramirez A, Shuman S, Schwer B. Human RNA 5′-kinase (hClp1) can function as a tRNA splicing enzyme in vivo. RNA 2008, 14:1737-1745.
    • (2008) RNA , vol.14 , pp. 1737-1745
    • Ramirez, A.1    Shuman, S.2    Schwer, B.3
  • 81
    • 0029857320 scopus 로고    scopus 로고
    • Cell-cycle related regulation of poly(A) polymerase by phosphorylation.
    • Colgan DF, Murthy KG, Prives C, Manley JL. Cell-cycle related regulation of poly(A) polymerase by phosphorylation. Nature 1996, 384:282-285.
    • (1996) Nature , vol.384 , pp. 282-285
    • Colgan, D.F.1    Murthy, K.G.2    Prives, C.3    Manley, J.L.4
  • 82
    • 0141864673 scopus 로고    scopus 로고
    • Regulation of poly(A) polymerase by 14-3-3epsilon.
    • Kim H, Lee JH, Lee Y. Regulation of poly(A) polymerase by 14-3-3epsilon. EMBO J 2003, 22: 5208-5219.
    • (2003) EMBO J , vol.22 , pp. 5208-5219
    • Kim, H.1    Lee, J.H.2    Lee, Y.3
  • 83
    • 33947514003 scopus 로고    scopus 로고
    • Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing.
    • Shimazu T, Horinouchi S, Yoshida M. Multiple histone deacetylases and the CREB-binding protein regulate pre-mRNA 3′-end processing. J Biol Chem 2007, 282:4470-4478.
    • (2007) J Biol Chem , vol.282 , pp. 4470-4478
    • Shimazu, T.1    Horinouchi, S.2    Yoshida, M.3
  • 84
    • 39449103526 scopus 로고    scopus 로고
    • Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function.
    • Vethantham V, Rao N, Manley JL. Sumoylation regulates multiple aspects of mammalian poly(A) polymerase function. Genes Dev 2008, 22:499-511.
    • (2008) Genes Dev , vol.22 , pp. 499-511
    • Vethantham, V.1    Rao, N.2    Manley, J.L.3
  • 86
    • 0034731317 scopus 로고    scopus 로고
    • An intronless gene encoding a poly(A) polymerase is specifically expressed in testis.
    • Lee YJ, Lee Y, Chung JH. An intronless gene encoding a poly(A) polymerase is specifically expressed in testis. FEBS Lett 2000, 487:287-292.
    • (2000) FEBS Lett , vol.487 , pp. 287-292
    • Lee, Y.J.1    Lee, Y.2    Chung, J.H.3
  • 87
    • 0034935020 scopus 로고    scopus 로고
    • Identification and functional characterization of neo-poly(A) polymerase, an RNA processing enzyme overexpressed in human tumors.
    • Topalian SL, Kaneko S, Gonzales MI, Bond GL, Ward Y, Manley JL. Identification and functional characterization of neo-poly(A) polymerase, an RNA processing enzyme overexpressed in human tumors. Mol Cell Biol 2001, 21:5614-5623.
    • (2001) Mol Cell Biol , vol.21 , pp. 5614-5623
    • Topalian, S.L.1    Kaneko, S.2    Gonzales, M.I.3    Bond, G.L.4    Ward, Y.5    Manley, J.L.6
  • 88
    • 0035823480 scopus 로고    scopus 로고
    • A novel nuclear human poly(A) polymerase (PAP), PAP gamma.
    • Kyriakopoulou CB, Nordvarg H, Virtanen A. A novel nuclear human poly(A) polymerase (PAP), PAP gamma. J Biol Chem 2001, 276:33504-33511.
    • (2001) J Biol Chem , vol.276 , pp. 33504-33511
    • Kyriakopoulou, C.B.1    Nordvarg, H.2    Virtanen, A.3
  • 89
    • 33746489955 scopus 로고    scopus 로고
    • Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase.
    • Trippe R, Guschina E, Hossbach M, Urlaub H, Luhrmann R, Benecke BJ. Identification, cloning, and functional analysis of the human U6 snRNA-specific terminal uridylyl transferase. RNA 2006, 12: 1494-1504.
    • (2006) RNA , vol.12 , pp. 1494-1504
    • Trippe, R.1    Guschina, E.2    Hossbach, M.3    Urlaub, H.4    Luhrmann, R.5    Benecke, B.J.6
  • 90
    • 34248225381 scopus 로고    scopus 로고
    • Efficient RNA polyuridylation by noncanonical poly(A) polymerases.
    • Rissland OS, Mikulasova A, Norbury CJ. Efficient RNA polyuridylation by noncanonical poly(A) polymerases. Mol Cell Biol 2007, 27:3612-3624.
    • (2007) Mol Cell Biol , vol.27 , pp. 3612-3624
    • Rissland, O.S.1    Mikulasova, A.2    Norbury, C.J.3
  • 91
    • 2442482777 scopus 로고    scopus 로고
    • Structure and function of poly(A) binding proteins.
    • Kuhn U, Wahle E. Structure and function of poly(A) binding proteins. Biochim Biophys Acta 2004, 1678: 67-84.
    • (2004) Biochim Biophys Acta , vol.1678 , pp. 67-84
    • Kuhn, U.1    Wahle, E.2
  • 92
    • 0027439688 scopus 로고
    • Assembly of a processive messenger RNA polyadenylation complex.
    • Bienroth S, Keller W, Wahle E. Assembly of a processive messenger RNA polyadenylation complex. EMBO J 1993, 12:585-594.
    • (1993) EMBO J , vol.12 , pp. 585-594
    • Bienroth, S.1    Keller, W.2    Wahle, E.3
  • 93
    • 0034659241 scopus 로고    scopus 로고
    • RNA polymerase II and the integration of nuclear events.
    • Hirose Y, Manley JL. RNA polymerase II and the integration of nuclear events. Genes Dev 2000, 14: 1415-1429.
    • (2000) Genes Dev , vol.14 , pp. 1415-1429
    • Hirose, Y.1    Manley, J.L.2
  • 95
    • 19344378943 scopus 로고    scopus 로고
    • Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors.
    • Bentley DL. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol 2005, 17:251-256.
    • (2005) Curr Opin Cell Biol , vol.17 , pp. 251-256
    • Bentley, D.L.1
  • 96
    • 0032480229 scopus 로고    scopus 로고
    • RNA polymerase II is an essential mRNA polyadenylation factor.
    • Hirose Y, Manley JL. RNA polymerase II is an essential mRNA polyadenylation factor. Nature 1998, 395:93-96.
    • (1998) Nature , vol.395 , pp. 93-96
    • Hirose, Y.1    Manley, J.L.2
  • 97
    • 0038219583 scopus 로고    scopus 로고
    • Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination.
    • Sadowski M, Dichtl B, Hubner W, Keller W. Independent functions of yeast Pcf11p in pre-mRNA 3′ end processing and in transcription termination. EMBO J 2003, 22:2167-2177.
    • (2003) EMBO J , vol.22 , pp. 2167-2177
    • Sadowski, M.1    Dichtl, B.2    Hubner, W.3    Keller, W.4
  • 98
    • 0030798246 scopus 로고    scopus 로고
    • Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA.
    • Dantonel JC, Murthy KG, Manley JL, Tora L. Transcription factor TFIID recruits factor CPSF for formation of 3′ end of mRNA. Nature 1997, 389:399-402.
    • (1997) Nature , vol.389 , pp. 399-402
    • Dantonel, J.C.1    Murthy, K.G.2    Manley, J.L.3    Tora, L.4
  • 99
    • 24044539185 scopus 로고    scopus 로고
    • Regulation of yeast mRNA 3′ end processing by phosphorylation.
    • He X, Moore C. Regulation of yeast mRNA 3′ end processing by phosphorylation. Mol Cell 2005, 19: 619-629.
    • (2005) Mol Cell , vol.19 , pp. 619-629
    • He, X.1    Moore, C.2
  • 100
    • 9644308046 scopus 로고    scopus 로고
    • Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites.
    • West S, Gromak N, Proudfoot NJ. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature 2004, 432:522-525.
    • (2004) Nature , vol.432 , pp. 522-525
    • West, S.1    Gromak, N.2    Proudfoot, N.J.3
  • 102
    • 34447550769 scopus 로고    scopus 로고
    • The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3′ processing and transcription termination.
    • Kaneko S, Rozenblatt-Rosen O, Meyerson M, Manley JL. The multifunctional protein p54nrb/PSF recruits the exonuclease XRN2 to facilitate pre-mRNA 3′ processing and transcription termination. Genes Dev 2007, 21:1779-1789.
    • (2007) Genes Dev , vol.21 , pp. 1779-1789
    • Kaneko, S.1    Rozenblatt-Rosen, O.2    Meyerson, M.3    Manley, J.L.4
  • 103
    • 70349306459 scopus 로고    scopus 로고
    • Assembly of an export-competent mRNP is needed for efficient release of the 3′-end processing complex after polyadenylation.
    • Qu X, Perez-Canadillas JM, Agrawal S, De Baecke J, Cheng H, Varani G, Moore C. Assembly of an export-competent mRNP is needed for efficient release of the 3′-end processing complex after polyadenylation. Mol Cell Biol 2009, 29:5327-5338.
    • (2009) Mol Cell Biol , vol.29 , pp. 5327-5338
    • Qu, X.1    Perez-Canadillas, J.M.2    Agrawal, S.3    De Baecke, J.4    Cheng, H.5    Varani, G.6    Moore, C.7
  • 105
  • 106
    • 0028788027 scopus 로고
    • Regulation of poly(A) site use during mouse B-cell development involves a change in the binding of a general polyadenylation factor in a B-cell stage-specific manner.
    • Edwalds-Gilbert G, Milcarek C. Regulation of poly(A) site use during mouse B-cell development involves a change in the binding of a general polyadenylation factor in a B-cell stage-specific manner. Mol Cell Biol 1995, 15:6420-6429.
    • (1995) Mol Cell Biol , vol.15 , pp. 6420-6429
    • Edwalds-Gilbert, G.1    Milcarek, C.2
  • 107
    • 0030606286 scopus 로고    scopus 로고
    • The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation.
    • Takagaki Y, Seipelt RL, Peterson ML, Manley JL. The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 1996, 87:941-952.
    • (1996) Cell , vol.87 , pp. 941-952
    • Takagaki, Y.1    Seipelt, R.L.2    Peterson, M.L.3    Manley, J.L.4
  • 108
    • 40949131742 scopus 로고    scopus 로고
    • Pre-messenger RNA cleavage factor I (CFIm): potential role in alternative polyadenylation during spermatogenesis.
    • Sartini BL, Wang H, Wang W, Millette CF, Kilpatrick DL. Pre-messenger RNA cleavage factor I (CFIm): potential role in alternative polyadenylation during spermatogenesis. Biol Reprod 2008, 78:472-482.
    • (2008) Biol Reprod , vol.78 , pp. 472-482
    • Sartini, B.L.1    Wang, H.2    Wang, W.3    Millette, C.F.4    Kilpatrick, D.L.5
  • 109
    • 37549012161 scopus 로고    scopus 로고
    • Sumoylation modulates the assembly and activity of the pre-mRNA 3′ processing complex.
    • Vethantham V, Rao N, Manley JL. Sumoylation modulates the assembly and activity of the pre-mRNA 3′ processing complex. Mol Cell Biol 2007, 27: 8848-8858.
    • (2007) Mol Cell Biol , vol.27 , pp. 8848-8858
    • Vethantham, V.1    Rao, N.2    Manley, J.L.3
  • 110
    • 0024988383 scopus 로고
    • In vitro polyadenylation is stimulated by the presence of an upstream intron.
    • Niwa M, Rose SD, Berget SM. In vitro polyadenylation is stimulated by the presence of an upstream intron. Genes Dev 1990, 4:1552-1559.
    • (1990) Genes Dev , vol.4 , pp. 1552-1559
    • Niwa, M.1    Rose, S.D.2    Berget, S.M.3
  • 111
    • 33745944934 scopus 로고    scopus 로고
    • Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3′ end processing and splicing.
    • Kyburz A, Friedlein A, Langen H, Keller W. Direct interactions between subunits of CPSF and the U2 snRNP contribute to the coupling of pre-mRNA 3′ end processing and splicing. Mol Cell 2006, 23:195-205.
    • (2006) Mol Cell , vol.23 , pp. 195-205
    • Kyburz, A.1    Friedlein, A.2    Langen, H.3    Keller, W.4
  • 112
    • 0031610367 scopus 로고    scopus 로고
    • U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase.
    • Gunderson SI, Polycarpou-Schwarz M, Mattaj IW. U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) polymerase. Mol Cell 1998, 1:255-264.
    • (1998) Mol Cell , vol.1 , pp. 255-264
    • Gunderson, S.I.1    Polycarpou-Schwarz, M.2    Mattaj, I.W.3
  • 113
    • 70350004235 scopus 로고    scopus 로고
    • HIV-1 mRNA 3′ end processing is distinctively regulated by eIF3f, CDK11, and splice factor 9G8.
    • Valente ST, Gilmartin GM, Venkatarama K, Arriagada G, Goff SP. HIV-1 mRNA 3′ end processing is distinctively regulated by eIF3f, CDK11, and splice factor 9G8. Mol Cell 2009, 36:279-289.
    • (2009) Mol Cell , vol.36 , pp. 279-289
    • Valente, S.T.1    Gilmartin, G.M.2    Venkatarama, K.3    Arriagada, G.4    Goff, S.P.5
  • 115
    • 33645290218 scopus 로고    scopus 로고
    • Drosophila Sex-lethal protein mediates polyadenylation switching in the female germline.
    • Gawande B, Robida MD, Rahn A, Singh R. Drosophila Sex-lethal protein mediates polyadenylation switching in the female germline. EMBO J 2006, 25:1263-1272.
    • (2006) EMBO J , vol.25 , pp. 1263-1272
    • Gawande, B.1    Robida, M.D.2    Rahn, A.3    Singh, R.4
  • 116
    • 0028173689 scopus 로고
    • The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase.
    • Gunderson SI, Beyer K, Martin G, Keller W, Boelens WC, and Mattaj LW. The human U1A snRNP protein regulates polyadenylation via a direct interaction with poly(A) polymerase. Cell 1994, 76:531-541.
    • (1994) Cell , vol.76 , pp. 531-541
    • Gunderson, S.I.1    Beyer, K.2    Martin, G.3    Keller, W.4    Boelens, W.C.5    Mattaj, L.W.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.