메뉴 건너뛰기




Volumn , Issue , 2011, Pages 1200-1206

Bayesian networks classifiers for gene-expression data

Author keywords

BAN; Bayesian classifier; Bayesian multinet; Bayesian network; C RPDAG; DNA microarray; gene expression data; Machine learning; na ve Bayes; Selective na ve Bayes; supervised classification; TAN

Indexed keywords

BAN; BAYESIAN CLASSIFIER; BAYESIAN MULTINET; C-RPDAG; DNA MICROARRAY; GENE EXPRESSION DATA; MACHINE-LEARNING; SUPERVISED CLASSIFICATION; TAN;

EID: 84857580325     PISSN: 21647143     EISSN: 21647151     Source Type: Conference Proceeding    
DOI: 10.1109/ISDA.2011.6121822     Document Type: Conference Paper
Times cited : (25)

References (68)
  • 8
    • 26044432578 scopus 로고    scopus 로고
    • Searching for dependencies in Bayesian classifiers,"
    • Artificial Intelligence and Statistics IV, ser. Springer-Verlag
    • M. J. Pazzani, "Searching for dependencies in Bayesian classifiers," in Artificial Intelligence and Statistics IV, ser. Lecture Notes in Statistics. Springer-Verlag, 1997.
    • (1997) Lecture Notes in Statistics
    • Pazzani, M.J.1
  • 11
    • 21244467165 scopus 로고    scopus 로고
    • Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs
    • S. Acid, L. M. de Campos, and J. G. Castellano, "Learning Bayesian network classifiers: Searching in a space of partially directed acyclic graphs," Machine Learning, vol. 59, no. 3, pp. 213-235, 2005. (Pubitemid 40890478)
    • (2005) Machine Learning , vol.59 , Issue.3 , pp. 213-235
    • Acid, S.1    De Campos, L.M.2    Castellano, J.G.3
  • 13
    • 0028806048 scopus 로고
    • Quantitative monitoring of gene expression patterns with a complementary DNA microarray
    • M. Schena, D. Shalon, R. W. Davis, and P. O. Brown, "Quantitative monitoring of gene expression patterns with a complementary DNA microarray." Science, vol. 270, no. 5235, pp. 467-70, 1995.
    • (1995) Science , vol.270 , Issue.5235 , pp. 467-470
    • Schena, M.1    Shalon, D.2    Davis, R.W.3    Brown, P.O.4
  • 15
    • 0036450130 scopus 로고    scopus 로고
    • Gene selection by sequential search wrapper approaches in microarray cancer class prediction
    • I. Inza, B. Sierra, R. Blanco, and P. Larrañaga, "Gene selection by sequential search wrapper approaches in microarray cancer class prediction." Journal of Intelligent and Fuzzy Systems, vol. 12, no. 1, pp. 25-34, 2002.
    • (2002) Journal of Intelligent and Fuzzy Systems , vol.12 , Issue.1 , pp. 25-34
    • Inza, I.1    Sierra, B.2    Blanco, R.3    Larrañaga, P.4
  • 16
    • 3042532685 scopus 로고    scopus 로고
    • Filter versus wrapper gene selection approaches in DNA microarray domains
    • DOI 10.1016/j.artmed.2004.01.007, PII S0933365704000193
    • I. Inza, P. Larrañaga, R. Blanco, and A. J. Cerrolaza, "Filter versus wrapper gene selection approaches in DNA microarray domains." Artificial Intelligence in Medicine, vol. 31, no. 2, pp. 91-103, 2004. (Pubitemid 38823034)
    • (2004) Artificial Intelligence in Medicine , vol.31 , Issue.2 , pp. 91-103
    • Inza, I.1    Larranaga, P.2    Blanco, R.3    Cerrolaza, A.J.4
  • 18
    • 0041481252 scopus 로고    scopus 로고
    • Estimation of distribution algorithms: A new tool for evolutionary computation
    • ser. Kluwer Academic Publishers
    • P. Larrañaga and J. A. Lozano, Estimation of distribution algorithms: A new tool for evolutionary computation, ser. Genetic Algorithms and Evolutionary Computation. Kluwer Academic Publishers, 2001.
    • (2001) Genetic Algorithms and Evolutionary Computation
    • Larrañaga, P.1    Lozano, J.A.2
  • 19
    • 0004250527 scopus 로고    scopus 로고
    • School of Computer Science & Engineering, Hebrew University, Jerusalem, Tech. Rep. 2000-38
    • A. Ben-Dor, N. Friedman, and Z. Yakhini, "Scoring genes for relevance," School of Computer Science & Engineering, Hebrew University, Jerusalem, Tech. Rep. 2000-38, 2000.
    • (2000) Scoring Genes for Relevance
    • Ben-Dor, A.1    Friedman, N.2    Yakhini, Z.3
  • 21
    • 34548572183 scopus 로고    scopus 로고
    • Visualization-based cancer microarray data classification analysis
    • M. Mramor, G. Leban, J. Demsar, and B. Zupan, "Visualization-based cancer microarray data classification analysis," Bioinformatics, 2007.
    • (2007) Bioinformatics
    • Mramor, M.1    Leban, G.2    Demsar, J.3    Zupan, B.4
  • 22
    • 63049118238 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene microarray data analysis
    • A. Osareh and B. Shadgar, "Classification and diagnostic prediction of cancers using gene microarray data analysis,"Journal of Applied Sciences, vol. 9, no. 3, pp. 459-468, 2009.
    • (2009) Journal of Applied Sciences , vol.9 , Issue.3 , pp. 459-468
    • Osareh, A.1    Shadgar, B.2
  • 23
    • 0347079826 scopus 로고    scopus 로고
    • Analysis of molecular profile data using generative and discriminative methods
    • E. Moler, M. Chow, and I. Mian, "Analysis of molecular profile data using generative and discriminative methods."Physiological Genomics, vol. 4, no. 2, pp. 109-126, 2000.
    • (2000) Physiological Genomics , vol.4 , Issue.2 , pp. 109-126
    • Moler, E.1    Chow, M.2    Mian, I.3
  • 24
    • 64049106891 scopus 로고    scopus 로고
    • A sequential feature extraction approach for naïve bayes classification of microarray data
    • L. Fan, K.-L. Poha, and P. Zhoub, "A sequential feature extraction approach for naïve bayes classification of microarray data," Expert Systems with Applications, vol. 36, no. 6, pp. 9919-9923, 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.6 , pp. 9919-9923
    • Fan, L.1    Poha, K.-L.2    Zhoub, P.3
  • 27
    • 44949178280 scopus 로고    scopus 로고
    • Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers
    • R. Armañanzas, I. Inza, and P. Larrañaga, "Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers,"Computer Methods and Programs in Biomedicine, vol. 91, no. 2, pp. 110-121, 2008.
    • (2008) Computer Methods and Programs in Biomedicine , vol.91 , Issue.2 , pp. 110-121
    • Armañanzas, R.1    Inza, I.2    Larrañaga, P.3
  • 29
    • 84857577926 scopus 로고    scopus 로고
    • Bayesian classifiers with consensus gene selection: A case study in the systemic lupus erythematosus
    • R. Armañanzas et al., "Bayesian classifiers with consensus gene selection: A case study in the systemic lupus erythematosus,"in Progress in Industrial Mathematics at ECMI 2006, 2007, vol. 12, pp. 560-565.
    • (2007) Progress in Industrial Mathematics at ECMI 2006 , vol.12 , pp. 560-565
    • Armañanzas, R.1
  • 31
    • 3042621767 scopus 로고    scopus 로고
    • Applying machine learning techniques to analysis of gene expression data: Cancer diagnosis
    • K. B. Hwang et al., "Applying machine learning techniques to analysis of gene expression data: Cancer diagnosis," in Methods of Microarray Data Analysis (Proc. of CAMDA'00),, 2002, pp. 167-182.
    • Methods of Microarray Data Analysis (Proc. of CAMDA'00),, 2002 , pp. 167-182
    • Hwang, K.B.1
  • 34
    • 0037480741 scopus 로고    scopus 로고
    • A bayesian network approach to operon prediction
    • DOI 10.1093/bioinformatics/btg147
    • J. Bockhorst et al., "A Bayesian network approach to operon prediction." Bioinformatics, vol. 19, no. 10, pp. 1227-35, 2003. (Pubitemid 36850215)
    • (2003) Bioinformatics , vol.19 , Issue.10 , pp. 1227-1235
    • Bockhorst, J.1    Craven, M.2    Page, D.3    Shavlik, J.4    Glasner, J.5
  • 37
    • 33747891871 scopus 로고    scopus 로고
    • Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks
    • DOI 10.1093/bioinformatics/btl230
    • O. Gevaert et al., "Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks," Bioinformatics, vol. 22, no. 14, pp. e184-e190, 2006. (Pubitemid 44288285)
    • (2006) Bioinformatics , vol.22 , Issue.14
    • Gevaert, O.1    De Smet, F.2    Timmerman, D.3    Moreau, Y.4    De Moor, B.5
  • 38
    • 40549133889 scopus 로고    scopus 로고
    • Integration of microarray and textual data improves the prognosis prediction of breast, lung and ovarian cancer patients
    • O. Gevaert, S. Van Vooren, and B. de Moor, "Integration of microarray and textual data improves the prognosis prediction of breast, lung and ovarian cancer patients." Pacific Symposium on Biocomputing, pp. 279-290, 2008.
    • (2008) Pacific Symposium on Biocomputing , pp. 279-290
    • Gevaert, O.1    Van Vooren, S.2    De Moor, B.3
  • 39
    • 29144477220 scopus 로고    scopus 로고
    • Bayesian model averaging of Bayesian network classifiers over multiple node-orders: Application to sparse datasets
    • K. B. Hwang and B. T. Zhang, "Bayesian model averaging of Bayesian network classifiers over multiple node-orders: application to sparse datasets," IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 35, no. 6, pp. 1302-1310, 2005.
    • (2005) IEEE Transactions on Systems, Man, and Cybernetics, Part B , vol.35 , Issue.6 , pp. 1302-1310
    • Hwang, K.B.1    Zhang, B.T.2
  • 41
    • 61949113914 scopus 로고    scopus 로고
    • Context-specific gene regulations in cancer gene expression data
    • I. Sen et al., "Context-specific gene regulations in cancer gene expression data," in Pacific Symposium on Biocomputing, vol. 14, 2009, pp. 75-86.
    • (2009) Pacific Symposium on Biocomputing , vol.14 , pp. 75-86
    • Sen, I.1
  • 43
    • 18244409687 scopus 로고    scopus 로고
    • Gene expression profiling predicts clinical outcome of breast cancer
    • L. J. van 't Veer et al., "Gene expression profiling predicts clinical outcome of breast cancer." Nature, vol. 415, no. 6871, pp. 530-536, 2002.
    • (2002) Nature , vol.415 , Issue.6871 , pp. 530-536
    • Van 't Veer, L.J.1
  • 44
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • S. L. Pomeroy et al., "Prediction of central nervous system embryonal tumour outcome based on gene expression," Nature, vol. 415, pp. 436 - 42, 2002.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1
  • 47
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • M. A. Shipp et al., "Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning," Nature Medicine, vol. 8, pp. 68-74, 2002.
    • (2002) Nature Medicine , vol.8 , pp. 68-74
    • Shipp, M.A.1
  • 48
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • T. R. Golub et al., "Molecular classification of cancer: class discovery and class prediction by gene expression monitoring,"Science, vol. 286, pp. 531-537, 1999.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 49
    • 18544375333 scopus 로고    scopus 로고
    • MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • S. A. Armstrong et al., "MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia,"Nature Genetics, vol. 30, pp. 41-7, 2002.
    • (2002) Nature Genetics , vol.30 , pp. 41-47
    • Armstrong, S.A.1
  • 55
    • 60849113126 scopus 로고    scopus 로고
    • Transcriptional network classifiers
    • H.-H. Chang and M. Ramoni, "Transcriptional network classifiers,"BMC Bioinformatics, vol. 10, no. 9, p. S1, 2009.
    • (2009) BMC Bioinformatics , vol.10 , Issue.9
    • Chang, H.-H.1    Ramoni, M.2
  • 56
    • 34249847958 scopus 로고    scopus 로고
    • pcaMethods - A bioconductor package providing PCA methods for incomplete data
    • DOI 10.1093/bioinformatics/btm069
    • W. Stacklies et al., "pcaMethods-a bioconductor package providing PCA methods for incomplete data," Bioinformatics, vol. 23, no. 9, pp. 1164-1167, 2007. (Pubitemid 47050571)
    • (2007) Bioinformatics , vol.23 , Issue.9 , pp. 1164-1167
    • Stacklies, W.1    Redestig, H.2    Scholz, M.3    Walther, D.4    Selbig, J.5
  • 58
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • DOI 10.1126/science.1105809
    • K. Sachs et al., "Causal protein-signaling networks derived from multiparameter single-cell data," Science, vol. 308, no. 5721, pp. 523-529, 2005. (Pubitemid 40570578)
    • (2005) Science , vol.308 , Issue.5721 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 60
    • 0014489272 scopus 로고
    • Metabolic stability and epigenesis in randomly constructed genetic nets
    • S. A. Kauffman, "Metabolic stability and epigenesis in randomly constructed genetic nets," Journal of Theoretical Biology, vol. 22, no. 3, pp. 437-467, 1969.
    • (1969) Journal of Theoretical Biology , vol.22 , Issue.3 , pp. 437-467
    • Kauffman, S.A.1
  • 65
    • 34249761849 scopus 로고
    • Learning Bayesian networks: The combination of knowledge and statistical data
    • D. Heckerman, D. Geiger, and D. M. Chickering, "Learning Bayesian networks: The combination of knowledge and statistical data." Machine Learning, vol. 20, no. 3, pp. 197-243, 1995.
    • (1995) Machine Learning , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 67
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • M. Friedman, "The use of ranks to avoid the assumption of normality implicit in the analysis of variance," Journal of the American Statistical Association, no. 32, pp. 675-701, 1937.
    • (1937) Journal of the American Statistical Association , Issue.32 , pp. 675-701
    • Friedman, M.1
  • 68
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar, "Statistical comparisons of classifiers over multiple data sets," Journal of Machine Learning Research, vol. 7, pp. 1-30, 2006. (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.