메뉴 건너뛰기




Volumn 9, Issue 3, 2009, Pages 459-468

Classification and diagnostic prediction of cancers using gene microarray data analysis

Author keywords

DNA; Gene classification; Gene selection; K nearest neighbours; Support vector machines

Indexed keywords

AUTOMATION; DECISION TREES; DISEASES; DNA; GENES; NEAREST NEIGHBOR SEARCH; SUPPORT VECTOR MACHINES;

EID: 63049118238     PISSN: 18125654     EISSN: 18125662     Source Type: Journal    
DOI: 10.3923/jas.2009.459.468     Document Type: Article
Times cited : (17)

References (35)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U., D. Barkai, A. Notterman and K. Gish, 1999. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci., 96: 6745-6750.
    • (1999) Proc. Natl. Acad. Sci , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, D.2    Notterman, A.3    Gish, K.4
  • 2
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacherjee, A., W. Richards, Staunton J. and C. Li, 2001. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci., 98: 13790-13795.
    • (2001) Proc. Natl. Acad. Sci , vol.98 , pp. 13790-13795
    • Bhattacherjee, A.1    Richards, W.2    Staunton, J.3    Li, C.4
  • 3
    • 1342330535 scopus 로고    scopus 로고
    • Is cross-validation valid for small sample microarray classification?
    • Braga-Neto, U. and E. Dougherty, 2004. Is cross-validation valid for small sample microarray classification? Bioinformatics, 200: 374-380.
    • (2004) Bioinformatics , vol.200 , pp. 374-380
    • Braga-Neto, U.1    Dougherty, E.2
  • 4
    • 0036643067 scopus 로고    scopus 로고
    • Estimating generalization error on two-class datasets using out-of-bag estimates
    • Bylander, T., 2002. Estimating generalization error on two-class datasets using out-of-bag estimates. Mach. Learn., 48: 287-297.
    • (2002) Mach. Learn , vol.48 , pp. 287-297
    • Bylander, T.1
  • 7
    • 0031211090 scopus 로고    scopus 로고
    • A decision theoretic generation of on-line learning and application to boosting
    • Freund, Y. and R. Schapire, 1997. A decision theoretic generation of on-line learning and application to boosting. J. Comput. Syst. Sci., 55: 119-139.
    • (1997) J. Comput. Syst. Sci , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.2
  • 8
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue Samples using microarray expression data
    • Furey, T., N. Cristianini, N. Duffy and D. Bednarski, 2000. Support vector machine classification and validation of cancer tissue Samples using microarray expression data. Bioinformatics, 16: 906-914.
    • (2000) Bioinformatics , vol.16 , pp. 906-914
    • Furey, T.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.4
  • 9
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class Prediction by gene expression monitoring
    • Golub, T., D. Slonim and C. Huard, 1999. Molecular classification of cancer: Class discovery and class Prediction by gene expression monitoring. J. Sci., 286: 531-537.
    • (1999) J. Sci , vol.286 , pp. 531-537
    • Golub, T.1    Slonim, D.2    Huard, C.3
  • 10
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., J. Weston and S. Barnhill, 2002. Gene selection for cancer classification using support vector machines. J. Mach. Learn., 46: 389-422.
    • (2002) J. Mach. Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 11
    • 0033818954 scopus 로고    scopus 로고
    • A concise guide to cDNA microarray analysis
    • Hedge, P., 2000. A concise guide to cDNA microarray analysis. Biotechniques, 29: 548-550.
    • (2000) Biotechniques , vol.29 , pp. 548-550
    • Hedge, P.1
  • 12
    • 85099325734 scopus 로고
    • Irrelevant features and the subset selection problem
    • Morgan Kaufmann Publishers, pp
    • John, G. and R. Kohavi, 1994. Irrelevant features and the subset selection problem, 11th International Conference on Machine Learning, 1994, Morgan Kaufmann Publishers, pp: 121-129.
    • (1994) 11th International Conference on Machine Learning , pp. 121-129
    • John, G.1    Kohavi, R.2
  • 13
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnosis of cancers using gene expression and artificial neural networks
    • Khan, J., J. Wei, M. Ringner and L. Saal, 2001. Classification and diagnosis of cancers using gene expression and artificial neural networks. J. Nat. Med., 7: 673-679.
    • (2001) J. Nat. Med , vol.7 , pp. 673-679
    • Khan, J.1    Wei, J.2    Ringner, M.3    Saal, L.4
  • 14
    • 33746227788 scopus 로고    scopus 로고
    • Gene classification using expression profiles: A feasibility study
    • Kuramochi, M. and G. Karypis, 2005. Gene classification using expression profiles: A feasibility study. Int. J. Artif. Intell. Tools., 14: 641-660.
    • (2005) Int. J. Artif. Intell. Tools , vol.14 , pp. 641-660
    • Kuramochi, M.1    Karypis, G.2
  • 15
    • 12244265090 scopus 로고    scopus 로고
    • Gene classification: A Bayesian variable selection approach
    • Lee, K., N., Sha, E. Dougherty and E. Vannucci, 2003. Gene classification: A Bayesian variable selection approach. Bioinformatics, 19: 90-97.
    • (2003) Bioinformatics , vol.19 , pp. 90-97
    • Lee, K.N.1    Sha2    Dougherty, E.3    Vannucci, E.4
  • 16
    • 30344444303 scopus 로고    scopus 로고
    • Classification using functional data analysis for temporal gene expression data
    • Leng, X. and H. Muller, 2006. Classification using functional data analysis for temporal gene expression data. Bioinformatics, 22: 68-76.
    • (2006) Bioinformatics , vol.22 , pp. 68-76
    • Leng, X.1    Muller, H.2
  • 17
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model based approach to the clustering of microarray expression data
    • McLachlan, G., R., Bean and D. Peel, 2002. A mixture model based approach to the clustering of microarray expression data. Bioinformatics, 18: 413-422.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.1    Bean, R.2    Peel, D.3
  • 18
    • 0004255908 scopus 로고    scopus 로고
    • 1st Edn, McGraw-Hill, ISBN: 0-07-115467-1
    • Michell, T., 1997. Machine Learning. 1st Edn., McGraw-Hill, ISBN: 0-07-115467-1.
    • (1997) Machine Learning
    • Michell, T.1
  • 19
    • 34547954999 scopus 로고    scopus 로고
    • A model for gene selection and classification of gene expression data
    • Mohd, S.M., O. Sigeru and D. Safaai, 2007. A model for gene selection and classification of gene expression data. Artif. Life. Robot., 11: 219-222.
    • (2007) Artif. Life. Robot , vol.11 , pp. 219-222
    • Mohd, S.M.1    Sigeru, O.2    Safaai, D.3
  • 20
    • 14044255876 scopus 로고    scopus 로고
    • Mukherjee, S. and S. Roberts, 2004. A theoretical analysis of gene selection. Proceedings of the IEEE Computer Society Bioinformatics Conference. August 16-19, IEEE Computer Society Washington, pp: 131-141.
    • Mukherjee, S. and S. Roberts, 2004. A theoretical analysis of gene selection. Proceedings of the IEEE Computer Society Bioinformatics Conference. August 16-19, IEEE Computer Society Washington, pp: 131-141.
  • 21
    • 0242361278 scopus 로고    scopus 로고
    • Predictive ability of DNA microarray for cancer outcomes and correlates: And empirical assessment
    • Ntzani, E., 2003. Predictive ability of DNA microarray for cancer outcomes and correlates: And empirical assessment. Lancet, 362: 1439-1444.
    • (2003) Lancet , vol.362 , pp. 1439-1444
    • Ntzani, E.1
  • 23
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumor outcome based on gene expression
    • Pomeroy, S., P. Tamayo, M. Gaasenbeek and L. Sturla, 2002. Prediction of central nervous system embryonal tumor outcome based on gene expression. Nature, 415: 436-442.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.1    Tamayo, P.2    Gaasenbeek, M.3    Sturla, L.4
  • 24
    • 0003500248 scopus 로고
    • 1st Edn, Morgan Kaufmann, San Francisco, ISBN: 1-55860-238-0
    • Quinlan, J., 1993. Programs for Machine Learning. 1st Edn., Morgan Kaufmann, San Francisco, ISBN: 1-55860-238-0.
    • (1993) Programs for Machine Learning
    • Quinlan, J.1
  • 25
    • 0347201147 scopus 로고    scopus 로고
    • Multiclass cancer diagnosis using tumor gene expression signature
    • Ramaswamy, S., P. Tamayo, R. Rifkin and S. Mukherjee, 2001. Multiclass cancer diagnosis using tumor gene expression signature. Proc. Natl. Acad. Sci., 98: 15149-15154.
    • (2001) Proc. Natl. Acad. Sci , vol.98 , pp. 15149-15154
    • Ramaswamy, S.1    Tamayo, P.2    Rifkin, R.3    Mukherjee, S.4
  • 26
    • 23044530914 scopus 로고    scopus 로고
    • Towards optimal feature and classifier for gene expression classification of cancer
    • Ryu, J. and S. Cho, 2002. Towards optimal feature and classifier for gene expression classification of cancer. Lecture Notes Comput. Sci., 2275: 310-317.
    • (2002) Lecture Notes Comput. Sci , vol.2275 , pp. 310-317
    • Ryu, J.1    Cho, S.2
  • 28
    • 33845415542 scopus 로고    scopus 로고
    • Cancer gene search with data mining and genetic algorithms
    • Shital, S. and A. Kusiak, 2007. Cancer gene search with data mining and genetic algorithms. Comput. Biol. Med., 37: 251-261.
    • (2007) Comput. Biol. Med , vol.37 , pp. 251-261
    • Shital, S.1    Kusiak, A.2
  • 29
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer Behavior
    • Singh, D., P. Febbo, D. Jackson,, J. Manola and C. Ladd, 2002. Gene expression correlates of clinical prostate cancer Behavior. Cancer Cell, 12: 203-209.
    • (2002) Cancer Cell , vol.12 , pp. 203-209
    • Singh, D.1    Febbo, P.2    Jackson, D.3    Manola, J.4    Ladd, C.5
  • 30
    • 0003991806 scopus 로고    scopus 로고
    • 1st Edn. John Wiley and Sons, New York, ISBN: 0471030031
    • Vapnik, V.N., 1998. Statistical Learning Theory. 1st Edn. John Wiley and Sons, New York, ISBN: 0471030031.
    • (1998) Statistical Learning Theory
    • Vapnik, V.N.1
  • 32
    • 0034533063 scopus 로고    scopus 로고
    • Computational method for gene expression based tumor classification
    • Xiong, M., L. Jin and W. Li, 2000. Computational method for gene expression based tumor classification. Biotechniques, 29: 1264-1270.
    • (2000) Biotechniques , vol.29 , pp. 1264-1270
    • Xiong, M.1    Jin, L.2    Li, W.3
  • 33
    • 0034782618 scopus 로고    scopus 로고
    • Model based clustering and data transformations for gene expression data
    • Yeung, K., C. Fraley, A. Murua and A. Raftery, 2001. Model based clustering and data transformations for gene expression data. Bioinformatics, 17: 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.1    Fraley, C.2    Murua, A.3    Raftery, A.4
  • 34
    • 19544362938 scopus 로고    scopus 로고
    • Bayesian model averaging: Development of an improved multi-class gene selection and classification tool for microarray data
    • Yeung, K., R. Bumgarner and A. Raftery, 2005. Bayesian model averaging: Development of an improved multi-class gene selection and classification tool for microarray data. Bioinformatics, 21: 2394-2402.
    • (2005) Bioinformatics , vol.21 , pp. 2394-2402
    • Yeung, K.1    Bumgarner, R.2    Raftery, A.3
  • 35
    • 30344438839 scopus 로고    scopus 로고
    • Gene selection using support vector machine with non-convex penalty
    • Zhang, H., J. Ahn and C. Park, 2006. Gene selection using support vector machine with non-convex penalty. Bioinformatics., 22: 88-95.
    • (2006) Bioinformatics , vol.22 , pp. 88-95
    • Zhang, H.1    Ahn, J.2    Park, C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.