메뉴 건너뛰기




Volumn 2, Issue 5, 2011, Pages

Biochemical and thermodynamic analyses of salmonella enterica pat, a Multidomain, Multimeric Nε-lysine acetyltransferase involved in carbon and energy metabolism

Author keywords

[No Author keywords available]

Indexed keywords

ACETYL COENZYME A; ACETYL COENZYME A SYNTHETASE; BACTERIAL ENZYME; BACTERIAL PROTEIN; HISTONE ACETYLTRANSFERASE GCN5; N EPSILON LYSINE ACETYLTRANSFERASE; SALMONELLA ENTERICA PAT ENZYME; UNCLASSIFIED DRUG;

EID: 84857113471     PISSN: None     EISSN: 21507511     Source Type: Journal    
DOI: 10.1128/mBio.00216-11     Document Type: Article
Times cited : (38)

References (51)
  • 1
    • 0030954208 scopus 로고    scopus 로고
    • GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein
    • Neuwald AF, Landsman D. 1997. GCN5-related histone N-acetyltransferases belong to a diverse superfamily that includes the yeast SPT10 protein. Trends Biochem. Sci. 22:154-155.
    • (1997) Trends Biochem. Sci , vol.22 , pp. 154-155
    • Neuwald, A.F.1    Landsman, D.2
  • 2
    • 9744255506 scopus 로고    scopus 로고
    • Structure and functions of the GNAT super-family of acetyltransferases
    • Vetting MW, et al. 2005. Structure and functions of the GNAT super-family of acetyltransferases. Arch. Biochem. Biophys. 433:212-226.
    • (2005) Arch. Biochem. Biophys , vol.433 , pp. 212-226
    • Vetting, M.W.1
  • 3
    • 2342599619 scopus 로고    scopus 로고
    • The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases
    • Yang XJ. 2004. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases. Nucleic Acids Res. 32:959-976.
    • (2004) Nucleic Acids Res , vol.32 , pp. 959-976
    • Yang, X.J.1
  • 4
    • 36049028058 scopus 로고    scopus 로고
    • New nomenclature for chromatin-modifying enzymes
    • Allis CD, et al. 2007. New nomenclature for chromatin-modifying enzymes. Cell 131:633-636.
    • (2007) Cell , vol.131 , pp. 633-636
    • Allis, C.D.1
  • 5
    • 0033000990 scopus 로고    scopus 로고
    • Histone acetylases and deacetylases in cell proliferation
    • Kouzarides T. 1999. Histone acetylases and deacetylases in cell proliferation. Curr. Opin. Genet. Dev. 9:40-48.
    • (1999) Curr. Opin. Genet. Dev , vol.9 , pp. 40-48
    • Kouzarides, T.1
  • 6
    • 56049090769 scopus 로고    scopus 로고
    • Acetylation of non-histone proteins modulates cellular signalling at multiple levels
    • Spange S, Wagner T, Heinzel T, Krämer OH. 2009. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int. J. Biochem. Cell Biol. 41:185-198.
    • (2009) Int. J. Biochem. Cell Biol , vol.41 , pp. 185-198
    • Spange, S.1    Wagner, T.2    Heinzel, T.3    Krämer, O.H.4
  • 7
    • 0347457075 scopus 로고    scopus 로고
    • Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine
    • Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. 2002. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science 298:2390-2392.
    • (2002) Science , vol.298 , pp. 2390-2392
    • Starai, V.J.1    Celic, I.2    Cole, R.N.3    Boeke, J.D.4    Escalante-Semerena, J.C.5
  • 9
    • 3242788065 scopus 로고    scopus 로고
    • Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica
    • Starai VJ, Escalante-Semerena JC. 2004. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J. Mol. Biol. 340:1005-1012.
    • (2004) J. Mol. Biol , vol.340 , pp. 1005-1012
    • Starai, V.J.1    Escalante-Semerena, J.C.2
  • 10
    • 33745931074 scopus 로고    scopus 로고
    • Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases
    • Hallows WC, Lee S, Denu JM. 2006. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc. Natl. Acad. Sci. U. S. A. 103: 10230-10235.
    • (2006) Proc. Natl. Acad. Sci. U. S. A , vol.103 , pp. 10230-10235
    • Hallows, W.C.1    Lee, S.2    Denu, J.M.3
  • 11
    • 33745889628 scopus 로고    scopus 로고
    • Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2
    • Schwer B, Bunkenborg J, Verdin RO, Andersen JS, Verdin E. 2006. Reversible lysine acetylation controls the activity of the mitochondrial enzyme acetyl-CoA synthetase 2. Proc. Natl. Acad. Sci. U. S. A. 103: 10224-10229.
    • (2006) Proc. Natl. Acad. Sci. U. S. A , vol.103 , pp. 10224-10229
    • Schwer, B.1    Bunkenborg, J.2    Verdin, R.O.3    Andersen, J.S.4    Verdin, E.5
  • 12
    • 1842610541 scopus 로고    scopus 로고
    • A link between transcription and intermediary metabolism: A role for Sir2 in the control of acetyl-coenzyme A synthetase
    • Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC. 2004. A link between transcription and intermediary metabolism: a role for Sir2 in the control of acetyl-coenzyme A synthetase. Curr. Opin. Microbiol. 7:115-119.
    • (2004) Curr. Opin. Microbiol , vol.7 , pp. 115-119
    • Starai, V.J.1    Takahashi, H.2    Boeke, J.D.3    Escalante-Semerena, J.C.4
  • 13
    • 0037297590 scopus 로고    scopus 로고
    • Short-chain fatty acid activation by acyl coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae
    • Starai VJ, Takahashi H, Boeke JD, Escalante-Semerena JC. 2003. Short-chain fatty acid activation by acyl coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae. Genetics 163:545-555.
    • (2003) Genetics , vol.163 , pp. 545-555
    • Starai, V.J.1    Takahashi, H.2    Boeke, J.D.3    Escalante-Semerena, J.C.4
  • 14
    • 35648935529 scopus 로고    scopus 로고
    • N-lysine propionylation controls the activity of propionyl-CoA synthetase
    • Garrity J, et al. 2007. N-lysine propionylation controls the activity of propionyl-CoA synthetase. J. Biol. Chem. 282:30239-30245.
    • (2007) J. Biol. Chem , vol.282 , pp. 30239-30245
    • Garrity, J.1
  • 15
    • 77149120797 scopus 로고    scopus 로고
    • Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
    • Wang Q, et al. 2010. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 327:1004-1007.
    • (2010) Science , vol.327 , pp. 1004-1007
    • Wang, Q.1
  • 16
    • 79251477191 scopus 로고    scopus 로고
    • N(epsilon)-lysine acetylation of a bacterial transcription factor inhibits its DNA-binding activity
    • Thao S, Chen CS, Zhu H, Escalante-Semerena JC. 2010. N(epsilon)-lysine acetylation of a bacterial transcription factor inhibits its DNA-binding activity. PLoS One 5:e15123.
    • (2010) PLoS One , vol.e15123 , pp. 5
    • Thao, S.1    Chen, C.S.2    Zhu, H.3    Escalante-Semerena, J.C.4
  • 17
    • 67749127751 scopus 로고    scopus 로고
    • Structure and biochemical characterization of protein acetyltransferase from Sul-folobus solfataricus
    • Brent MM, Iwata A, Carten J, Zhao K, Marmorstein R. 2009. Structure and biochemical characterization of protein acetyltransferase from Sul-folobus solfataricus. J. Biol. Chem. 284:19412-19419.
    • (2009) J. Biol. Chem , vol.284 , pp. 19412-19419
    • Brent, M.M.1    Iwata, A.2    Carten, J.3    Zhao, K.4    Marmorstein, R.5
  • 18
    • 20444427964 scopus 로고    scopus 로고
    • Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein
    • Marsh VL, Peak-Chew SY, Bell SD. 2005. Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba. J. Biol. Chem. 280: 21122-21228.
    • (2005) Alba. J. Biol. Chem , vol.280 , pp. 21122-21228
    • Marsh, V.L.1    Peak-Chew, S.Y.2    Bell, S.D.3
  • 19
    • 0018870981 scopus 로고
    • Ribosomal protein modification in Escherichia coli. II. Studies of a mutant lacking the N-terminal acetylation of protein S18
    • Isono K, Isono S. 1980. Ribosomal protein modification in Escherichia coli. II. Studies of a mutant lacking the N-terminal acetylation of protein S18. Mol. Gen. Genet. 177:645-651.
    • (1980) Mol. Gen. Genet , vol.177 , pp. 645-651
    • Isono, K.1    Isono, S.2
  • 21
    • 0024381096 scopus 로고
    • Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli K12
    • Tanaka S, Matsushita Y, Yoshikawa A, Isono K. 1989. Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli K12. Mol. Gen. Genet. 217:289-293.
    • (1989) Mol. Gen. Genet , vol.217 , pp. 289-293
    • Tanaka, S.1    Matsushita, Y.2    Yoshikawa, A.3    Isono, K.4
  • 22
    • 57049152851 scopus 로고    scopus 로고
    • Catalysis and substrate selection by histone/protein lysine acetyltransferases
    • Berndsen CE, Denu JM. 2008. Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr. Opin. Struct. Biol. 18: 682-689.
    • (2008) Curr. Opin. Struct. Biol , vol.18 , pp. 682-689
    • Berndsen, C.E.1    Denu, J.M.2
  • 23
    • 0034601778 scopus 로고    scopus 로고
    • Kinetic mechanism of human histone acetyltransferase P/CAF
    • Tanner KG, Langer MR, Denu JM. 2000. Kinetic mechanism of human histone acetyltransferase P/CAF. Biochemistry 39:11961-11969.
    • (2000) Biochemistry , vol.39 , pp. 11961-11969
    • Tanner, K.G.1    Langer, M.R.2    Denu, J.M.3
  • 24
    • 0034698085 scopus 로고    scopus 로고
    • Kinetic mechanism of the histone acetyltransferase GCN5 from yeast
    • Tanner KG, Langer MR, Kim Y, Denu JM. 2000. Kinetic mechanism of the histone acetyltransferase GCN5 from yeast. J. Biol. Chem. 275: 22048-22055.
    • (2000) J. Biol. Chem , vol.275 , pp. 22048-22055
    • Tanner, K.G.1    Langer, M.R.2    Kim, Y.3    Denu, J.M.4
  • 25
    • 3042934967 scopus 로고
    • Tissue sulfhydryl groups
    • Ellman GL. 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82: 70-77.
    • (1959) Arch. Biochem. Biophys , vol.82 , pp. 70-77
    • Ellman, G.L.1
  • 27
    • 0037439453 scopus 로고    scopus 로고
    • Molar absorption coefficients for the reduced Ellman reagent: Reassessment
    • Eyer P, et al. 2003. Molar absorption coefficients for the reduced Ellman reagent: reassessment. Anal. Biochem. 312:224-227.
    • (2003) Anal. Biochem , vol.312 , pp. 224-227
    • Eyer, P.1
  • 28
    • 0003518480 scopus 로고
    • John Wiley & Sons, New York, NY
    • Segel IH. 1975. Enzyme kinetics. John Wiley & Sons, New York, NY.
    • (1975) Enzyme Kinetics
    • Segel, I.H.1
  • 29
    • 78751676934 scopus 로고    scopus 로고
    • KAT(ching) metabolism by the tail: Insight into the links between lysine acetyltransferases and metabolism
    • Albaugh BN, Arnold KM, Denu JM. 2011. KAT(ching) metabolism by the tail: insight into the links between lysine acetyltransferases and metabolism. ChemBioChem 12:290-298.
    • (2011) ChemBioChem , vol.12 , pp. 290-298
    • Albaugh, B.N.1    Arnold, K.M.2    Denu, J.M.3
  • 30
    • 0035903089 scopus 로고    scopus 로고
    • Mutational analysis of conserved residues in the GCN5 family of histone acetyltransferases
    • Langer MR, Tanner KG, Denu JM. 2001. Mutational analysis of conserved residues in the GCN5 family of histone acetyltransferases. J. Biol. Chem. 276:31321-31331.
    • (2001) J. Biol. Chem , vol.276 , pp. 31321-31331
    • Langer, M.R.1    Tanner, K.G.2    Denu, J.M.3
  • 31
    • 0033603555 scopus 로고    scopus 로고
    • Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcrip-tional coactivator
    • Tanner KG, et al. 1999. Catalytic mechanism and function of invariant glutamic acid 173 from the histone acetyltransferase GCN5 transcrip-tional coactivator. J. Biol. Chem. 274:18157-18160.
    • (1999) J. Biol. Chem , vol.274 , pp. 18157-18160
    • Tanner, K.G.1
  • 32
    • 0033529845 scopus 로고    scopus 로고
    • Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator
    • Trievel RC, et al. 1999. Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc. Natl. Acad. Sci. U. S. A. 96:8931-8936.
    • (1999) Proc. Natl. Acad. Sci. U. S. A , vol.96 , pp. 8931-8936
    • Trievel, R.C.1
  • 33
    • 0036087169 scopus 로고    scopus 로고
    • Superfamily: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments
    • Gough J, Chothia C. 2002. Superfamily: HMMs representing all proteins of known structure. SCOP sequence searches, alignments and genome assignments. Nucleic Acids Res. 30:268-272.
    • (2002) Nucleic Acids Res , vol.30 , pp. 268-272
    • Gough, J.1    Chothia, C.2
  • 34
    • 0033635283 scopus 로고    scopus 로고
    • Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases
    • Yan Y, Barlev NA, Haley RH, Berger SL, Marmorstein R. 2000. Crystal structure of yeast Esa1 suggests a unified mechanism for catalysis and substrate binding by histone acetyltransferases. Mol. Cell 6:1195-1205.
    • (2000) Mol. Cell , vol.6 , pp. 1195-1205
    • Yan, Y.1    Barlev, N.A.2    Haley, R.H.3    Berger, S.L.4    Marmorstein, R.5
  • 35
    • 0036830560 scopus 로고    scopus 로고
    • The catalytic mechanism ofthe ESA1 histone acetyltransferase involvesaself-acetylated intermediate
    • Yan Y, Harper S, Speicher DW, Marmorstein R. 2002. The catalytic mechanism ofthe ESA1 histone acetyltransferase involvesaself-acetylated intermediate. Nat. Struct. Biol. 9:862-869.
    • (2002) Nat. Struct. Biol , vol.9 , pp. 862-869
    • Yan, Y.1    Harper, S.2    Speicher, D.W.3    Marmorstein, R.4
  • 36
    • 72949117250 scopus 로고    scopus 로고
    • Elucidating protein binding mechanisms by variable-c ITC
    • Freiburger LA, Auclair K, Mittermaier AK. 2009. Elucidating protein binding mechanisms by variable-c ITC. ChemBioChem 10:2871-2873.
    • (2009) ChemBioChem , vol.10 , pp. 2871-2873
    • Freiburger, L.A.1    Auclair, K.2    Mittermaier, A.K.3
  • 37
    • 79952361572 scopus 로고    scopus 로고
    • Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme
    • Freiburger LA, et al Competing allosteric mechanisms modulate substrate binding in a dimeric enzyme. Nat. Struct. Mol. Biol. 18:288-294.
    • Nat. Struct. Mol. Biol , vol.18 , pp. 288-294
    • Freiburger, L.A.1
  • 38
    • 0038728733 scopus 로고    scopus 로고
    • Kinetic mechanism of the GCN5-related chromosomal aminoglycoside acetyltransferase AAC(6=)-Ii from Enterococcus faecium: Evidence of dimer subunit cooper-ativity
    • Draker KA, Northrop DB, Wright GD. 2003. Kinetic mechanism of the GCN5-related chromosomal aminoglycoside acetyltransferase AAC(6=)-Ii from Enterococcus faecium: evidence of dimer subunit cooper-ativity. Biochemistry 42:6565-6574.
    • (2003) Biochemistry , vol.42 , pp. 6565-6574
    • Draker, K.A.1    Northrop, D.B.2    Wright, G.D.3
  • 39
    • 0000033162 scopus 로고
    • Acyl adenylates: An enzymatic mechanism of acetate activation
    • Berg P. 1956. Acyl adenylates: an enzymatic mechanism of acetate activation. J. Biol. Chem. 222:991-1013.
    • (1956) J. Biol. Chem , vol.222 , pp. 991-1013
    • Berg, P.1
  • 40
    • 0037452897 scopus 로고    scopus 로고
    • The 1.75 Å crystal structure of acetyl-CoA synthetase bound to adenosine-5=-propylphosphate and coenzyme A
    • Gulick AM, Starai VJ, Horswill AR, Homick KM, Escalante-Semerena JC. 2003. The 1.75 Å crystal structure of acetyl-CoA synthetase bound to adenosine-5=-propylphosphate and coenzyme A. Biochemistry 42: 2866-2873.
    • (2003) Biochemistry , vol.42 , pp. 2866-2873
    • Gulick, A.M.1    Starai, V.J.2    Horswill, A.R.3    Homick, K.M.4    Escalante-Semerena, J.C.5
  • 41
    • 34249872993 scopus 로고    scopus 로고
    • Biochemical and crystallo-graphic analysis of substrate binding and conformational changes in acetyl-CoA synthetase
    • Reger AS, Carney JM, Gulick AM. 2007. Biochemical and crystallo-graphic analysis of substrate binding and conformational changes in acetyl-CoA synthetase. Biochemistry 46:6536-6546.
    • (2007) Biochemistry , vol.46 , pp. 6536-6546
    • Reger, A.S.1    Carney, J.M.2    Gulick, A.M.3
  • 42
    • 0017759929 scopus 로고
    • The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli
    • Brown TD, Jones-Mortimer MC, Kornberg HL. 1977. The enzymic interconversion of acetate and acetyl-coenzyme A in Escherichia coli. J. Gen. Microbiol. 102:327-336.
    • (1977) J. Gen. Microbiol , vol.102 , pp. 327-336
    • Brown, T.D.1    Jones-Mortimer, M.C.2    Kornberg, H.L.3
  • 43
    • 0029009026 scopus 로고
    • Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli
    • Kumari S, Tishel R, Eisenbach M, Wolfe AJ. 1995. Cloning, characterization, and functional expression of acs, the gene which encodes acetyl coenzyme A synthetase in Escherichia coli. J. Bacteriol. 177:2878-2886.
    • (1995) J. Bacteriol , vol.177 , pp. 2878-2886
    • Kumari, S.1    Tishel, R.2    Eisenbach, M.3    Wolfe, A.J.4
  • 44
    • 0346964255 scopus 로고    scopus 로고
    • Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: Anti-activation by the nucleoid proteins FIS and IHF
    • Browning DF, et al. 2004. Modulation of CRP-dependent transcription at the Escherichia coli acsP2 promoter by nucleoprotein complexes: anti-activation by the nucleoid proteins FIS and IHF. Mol. Microbiol. 51: 241-254.
    • (2004) Mol. Microbiol , vol.51 , pp. 241-254
    • Browning, D.F.1
  • 45
    • 79953058855 scopus 로고    scopus 로고
    • In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate
    • Chan CH, Garrity J, Crosby HA, Escalante-Semerena JC. 2011. In Salmonella enterica, the sirtuin-dependent protein acylation/deacylation system (SDPADS) maintains energy homeostasis during growth on low concentrations of acetate. Mol. Microbiol. 80:168-183.
    • (2011) Mol. Microbiol , vol.80 , pp. 168-183
    • Chan, C.H.1    Garrity, J.2    Crosby, H.A.3    Escalante-Semerena, J.C.4
  • 46
    • 41549104836 scopus 로고    scopus 로고
    • Construction and use of new cloning vectors for the rapid isolation of recombinant proteins from Escherichia coli
    • Rocco CJ, Dennison KL, Klenchin VA, Rayment I, Escalante-Semerena JC. 2008. Construction and use of new cloning vectors for the rapid isolation of recombinant proteins from Escherichia coli. Plasmid 59:231-237.
    • (2008) Plasmid , vol.59 , pp. 231-237
    • Rocco, C.J.1    Dennison, K.L.2    Klenchin, V.A.3    Rayment, I.4    Escalante-Semerena, J.C.5
  • 47
    • 34250348569 scopus 로고    scopus 로고
    • A combined approach to improving large-scale production of tobacco etch virus protease
    • Blommel PG, Fox BG. 2007. A combined approach to improving large-scale production of tobacco etch virus protease. Protein Expr. Purif. 55: 53-68.
    • (2007) Protein Expr. Purif , vol.55 , pp. 53-68
    • Blommel, P.G.1    Fox, B.G.2
  • 48
    • 0028329918 scopus 로고
    • Release of proteins and peptides from fusion proteins using a re-combinant plant virus proteinase
    • Parks TD, Leuther KK, Howard ED, Johnston SA, Dougherty WG. 1994. Release of proteins and peptides from fusion proteins using a re-combinant plant virus proteinase. Anal. Biochem. 216:413-417.
    • (1994) Anal. Biochem , vol.216 , pp. 413-417
    • Parks, T.D.1    Leuther, K.K.2    Howard, E.D.3    Johnston, S.A.4    Dougherty, W.G.5
  • 49
    • 0030593468 scopus 로고    scopus 로고
    • Over-production of proteins in Escherichia coli: Mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels
    • Miroux B, Walker JE. 1996. Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J. Mol. Biol. 260:289-298.
    • (1996) J. Mol. Biol , vol.260 , pp. 289-298
    • Miroux, B.1    Walker, J.E.2
  • 50
    • 0034672126 scopus 로고    scopus 로고
    • Application of a fluorescent histone acetyltransferase assay to probe the substrate specificity of the human p300/CBP-associated factor
    • Trievel RC, Li FY, Marmorstein R. 2000. Application of a fluorescent histone acetyltransferase assay to probe the substrate specificity of the human p300/CBP-associated factor. Anal. Biochem. 287:319-328.
    • (2000) Anal. Biochem , vol.287 , pp. 319-328
    • Trievel, R.C.1    Li, F.Y.2    Marmorstein, R.3
  • 51
    • 58149203237 scopus 로고    scopus 로고
    • CDD: Specific functional annotation with the Conserved Domain Database
    • Marchler-Bauer A, et al. 2009. CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res. 37:D205-D210.
    • (2009) Nucleic Acids Res , vol.37
    • Marchler-Bauer, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.