메뉴 건너뛰기




Volumn 179, Issue 17, 2009, Pages 2964-2973

A method of learning weighted similarity function to improve the performance of nearest neighbor

Author keywords

Adaptive distance measure; Nearest neighbor; Prototype reduction; Weighted metrics

Indexed keywords

ADAPTIVE DISTANCE MEASURE; CLASSIFICATION RATES; DISTANCE FUNCTIONS; EXECUTION SPEED; LARGE DATASETS; LEAVE-ONE-OUT; METHOD OF LEARNING; NEAREST NEIGHBOR; NEAREST NEIGHBOR CLASSIFIER; NEAREST NEIGHBORS; PROTOTYPE REDUCTION; QUERY PATTERNS; REDUCTION TECHNIQUES; SIMILARITY FUNCTIONS; SIMILARITY MEASURE; STORAGE REQUIREMENTS; TEST INSTANCES; TRAINING SETS; WEIGHTED METRICS;

EID: 67549091208     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2009.04.012     Document Type: Article
Times cited : (85)

References (21)
  • 1
    • 34250357173 scopus 로고    scopus 로고
    • A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets
    • Chen G., Wang C.Z., and Hu Q.H. A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets. Information Sciences 177 (2007) 3500-3518
    • (2007) Information Sciences , vol.177 , pp. 3500-3518
    • Chen, G.1    Wang, C.Z.2    Hu, Q.H.3
  • 6
    • 0004067283 scopus 로고
    • Flexible Metric Nearest-neighbor Classification
    • Technical Report 113, Department of Statistices, Stanford University
    • J. Friedman, Flexible Metric Nearest-neighbor Classification, Technical Report 113, Department of Statistices, Stanford University, 1994.
    • (1994)
    • Friedman, J.1
  • 8
    • 46749140199 scopus 로고    scopus 로고
    • Neighborhood rough set based heterogeneous feature subset selection
    • Hu Q., Yu D., Liu J., and Wu C. Neighborhood rough set based heterogeneous feature subset selection. Information Sciences 178 (2008) 3577-3594
    • (2008) Information Sciences , vol.178 , pp. 3577-3594
    • Hu, Q.1    Yu, D.2    Liu, J.3    Wu, C.4
  • 9
    • 9444236865 scopus 로고    scopus 로고
    • Comparison of instances selection algorithm I: Algorithms survey
    • L. Rutkowski et al, Eds, ICAISC, Springer-Verlag
    • N. Jankowski, M. Grochowski, Comparison of instances selection algorithm I: algorithms survey, in: L. Rutkowski et al. (Eds.), ICAISC, Springer-Verlag, LNAI 3070, 2004, pp. 598-603.
    • (2004) LNAI , vol.3070 , pp. 598-603
    • Jankowski, N.1    Grochowski, M.2
  • 10
    • 36049048847 scopus 로고    scopus 로고
    • Weighted instance typicality search (WITS): a nearest neighbor data reduction algorithm
    • Morring B.D., and Martinez T.R. Weighted instance typicality search (WITS): a nearest neighbor data reduction algorithm. Intelligent Data Analysis 7 6 (2003)
    • (2003) Intelligent Data Analysis , vol.7 , Issue.6
    • Morring, B.D.1    Martinez, T.R.2
  • 11
    • 27744468378 scopus 로고    scopus 로고
    • Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization
    • Paredes R., and Vidal E. Learning prototypes and distances: a prototype reduction technique based on nearest neighbor error minimization. Pattern Recognition 39 (2006) 180-188
    • (2006) Pattern Recognition , vol.39 , pp. 180-188
    • Paredes, R.1    Vidal, E.2
  • 13
    • 34748818341 scopus 로고    scopus 로고
    • Selecting representative examples and attributes by a genetic algorithm
    • Rozsypal A., and Kubat M. Selecting representative examples and attributes by a genetic algorithm. Intelligent Data Analysis 7 4 (2003)
    • (2003) Intelligent Data Analysis , vol.7 , Issue.4
    • Rozsypal, A.1    Kubat, M.2
  • 14
    • 33751002948 scopus 로고    scopus 로고
    • A novel feature selection approach: combining feature wrappers and filters
    • Uncu O., and Türkşen I.B. A novel feature selection approach: combining feature wrappers and filters. Information Sciences 177 (2007) 449-466
    • (2007) Information Sciences , vol.177 , pp. 449-466
    • Uncu, O.1    Türkşen, I.B.2
  • 15
    • 33750796974 scopus 로고    scopus 로고
    • Improving nearest neighbor rule with a simple adaptive distance measure
    • Wang J., Neskovic P., and Cooper L.N. Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognition Letters 28 (2007) 207-213
    • (2007) Pattern Recognition Letters , vol.28 , pp. 207-213
    • Wang, J.1    Neskovic, P.2    Cooper, L.N.3
  • 16
    • 29144482039 scopus 로고    scopus 로고
    • Neighborhood selection in the k-nearest neighbor rule using statistical confidence
    • Wang J., Neskovic P., and Cooper L.N. Neighborhood selection in the k-nearest neighbor rule using statistical confidence. Pattern Recognition 39 (2006) 417-423
    • (2006) Pattern Recognition , vol.39 , pp. 417-423
    • Wang, J.1    Neskovic, P.2    Cooper, L.N.3
  • 17
    • 0033901276 scopus 로고    scopus 로고
    • An integrated instance-based learning algorithm
    • Wilson D.R., and Martinez T.R. An integrated instance-based learning algorithm. Computer Intelligence 16 1 (2000) 1-28
    • (2000) Computer Intelligence , vol.16 , Issue.1 , pp. 1-28
    • Wilson, D.R.1    Martinez, T.R.2
  • 18
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for exemplar-based learning algorithms
    • Wilson D.R., and Martinez T.R. Reduction techniques for exemplar-based learning algorithms. Machine Learning 38 3 (2000) 257-286
    • (2000) Machine Learning , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 19
    • 78651581007 scopus 로고    scopus 로고
    • Supervised Clustering: Algorithms and Applications
    • Technical Report UH-CS-06-10, Department of Computer Science, University of Houston, USA
    • N. Zeidat, C.F. Eick, Z. Zhao, Supervised Clustering: Algorithms and Applications, Technical Report UH-CS-06-10, Department of Computer Science, University of Houston, USA, 2006.
    • (2006)
    • Zeidat, N.1    Eick, C.F.2    Zhao, Z.3
  • 20
    • 33947267482 scopus 로고    scopus 로고
    • Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis
    • Zolghadri M.J., and Mansoori E.G. Weighting fuzzy classification rules using receiver operating characteristics (ROC) analysis. Information Sciences 177 11 (2007) 2296-2307
    • (2007) Information Sciences , vol.177 , Issue.11 , pp. 2296-2307
    • Zolghadri, M.J.1    Mansoori, E.G.2
  • 21
    • 37349070770 scopus 로고    scopus 로고
    • A proposed method for learning rule weights in fuzzy rule based classification systems
    • Jahromi M.Z., and Taheri M. A proposed method for learning rule weights in fuzzy rule based classification systems. Fuzzy Sets and Systems 159 4 (2008) 449-459
    • (2008) Fuzzy Sets and Systems , vol.159 , Issue.4 , pp. 449-459
    • Jahromi, M.Z.1    Taheri, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.