메뉴 건너뛰기




Volumn 50, Issue 24, 2011, Pages 13969-13983

Transition process modeling and monitoring based on dynamic ensemble clustering and multiclass support vector data description

Author keywords

[No Author keywords available]

Indexed keywords

ABNORMAL OPERATION; COMPONENT ANALYSIS; CRITICAL ACTIVITIES; DIMENSION REDUCTION; ENSEMBLE CLUSTERING; FAULTY OPERATIONS; MONITORING AND MANAGEMENT; MULTI-CLASS; NON-GAUSSIAN; NONSTATIONARY; ON DYNAMICS; SUPPORT VECTOR DATA DESCRIPTION; SYSTEMATIC FRAMEWORK; TENNESSEE EASTMAN; TIME-SERIES DATA; TRANSITION PROCESS; TRANSITION STATE;

EID: 83655192514     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie201792r     Document Type: Article
Times cited : (28)

References (40)
  • 1
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku, W.; Storer, R. H.; Georgakis, C. Disturbance detection and isolation by dynamic principal component analysis Chem. Intell. Lab. Syst. 1995, 30, 179-196
    • (1995) Chem. Intell. Lab. Syst. , vol.30 , pp. 179-196
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 2
    • 0028825273 scopus 로고
    • Multi-way partial least square in monitoring batch processes
    • Nomikos, P.; MacGregor, J. F. Multi-way partial least square in monitoring batch processes Chem. Intell. Lab. Syst. 1995, 30, 97-108
    • (1995) Chem. Intell. Lab. Syst. , vol.30 , pp. 97-108
    • Nomikos, P.1    MacGregor, J.F.2
  • 3
    • 0032044750 scopus 로고    scopus 로고
    • Recursive PLS algorithms for adaptive data modeling
    • PII S0098135497002627
    • Qin, S. J. Recursive PLS algorithms for adaptive data monitoring Comput. Chem. Eng. 1998, 22, 503-514 (Pubitemid 128714151)
    • (1998) Computers and Chemical Engineering , vol.22 , Issue.4-5 , pp. 503-514
    • Qin, S.J.1
  • 4
    • 0037394190 scopus 로고    scopus 로고
    • Monitoring independent components for fault detection
    • DOI 10.1002/aic.690490414
    • Kano, M.; Tanaka, S.; Hasebe, S.; Hashimoto, I.; Ohno, H. Monitoring independent components for fault detection AIChE J. 2003, 49, 969-976 (Pubitemid 36504561)
    • (2003) AIChE Journal , vol.49 , Issue.4 , pp. 969-976
    • Kano, M.1    Tanaka, S.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5
  • 5
    • 27844491086 scopus 로고    scopus 로고
    • Introduction of a nonlinearity measure for principal component models
    • DOI 10.1016/j.compchemeng.2005.05.013, PII S0098135405001377
    • Kruger, U.; Antory, D.; Hahn, J.; Irwin, G. W.; McCullough, G. Introduction of a nonlinearity measure for principal component models Comput. Chem. Eng. 2005, 29, 2355-2362 (Pubitemid 41660483)
    • (2005) Computers and Chemical Engineering , vol.29 , pp. 2355-2362
    • Kruger, U.1    Antory, D.2    Hahn, J.3    Irwin, G.W.4    McCullough, G.5
  • 6
    • 34547141675 scopus 로고    scopus 로고
    • Advances and new directions in plant-wide disturbance detection and diagnosis
    • DOI 10.1016/j.conengprac.2006.10.011, PII S0967066106001791
    • Thornhill, N. F.; Horch, A. Advances and new directions in plant-wide disturbance detection and diagnosis Control Eng. Pract. 2007, 15, 1196-1206 (Pubitemid 47109106)
    • (2007) Control Engineering Practice , vol.15 , pp. 1196-1206
    • Thornhill, N.F.1    Horch, A.2
  • 8
    • 34247109083 scopus 로고    scopus 로고
    • Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors
    • Ge, Z. Q.; Song, Z. H. Process monitoring based on independent component analysis-principal component analysis (ICA-PCA) and similarity factors Ind. Eng. Chem. Res. 2007, 46, 2054-2063
    • (2007) Ind. Eng. Chem. Res. , vol.46 , pp. 2054-2063
    • Ge, Z.Q.1    Song, Z.H.2
  • 9
    • 36749052831 scopus 로고    scopus 로고
    • Monitoring a complex refining process using multivariate statistics
    • DOI 10.1016/j.conengprac.2007.04.014, PII S0967066107001049
    • AlGhazzawi, A.; Lennox, B. Monitoring a complex refining process using multivariate statistics Control Eng. Pract. 2008, 16, 294-307 (Pubitemid 350215488)
    • (2008) Control Engineering Practice , vol.16 , Issue.3 , pp. 294-307
    • AlGhazzawi, A.1    Lennox, B.2
  • 10
    • 0037208133 scopus 로고    scopus 로고
    • Fault detection during process transitions: A model-based approach
    • DOI 10.1016/S0009-2509(02)00520-1, PII S0009250902005201
    • Bhagwat, A.; Srinivasan, R.; Krishnaswamy, P. R. Fault detection during process transitions: A model-based approach Chem. Eng. Sci. 2003, 58, 309-325 (Pubitemid 36141386)
    • (2003) Chemical Engineering Science , vol.58 , Issue.2 , pp. 309-325
    • Bhagwat, A.1    Srinivasan, R.2    Krishnaswamy, P.R.3
  • 12
    • 0038198780 scopus 로고    scopus 로고
    • Recursive partial least squares algorithms for monitoring complex industrial processes
    • DOI 10.1016/S0967-0661(02)00096-5, PII S0967066102000965
    • Wang, X.; Kruger, U.; Lennox, B. Recursive partial least squares algorithms for monitoring complex industrial processes Control Eng. Pract. 2003, 11, 613-632 (Pubitemid 36777464)
    • (2003) Control Engineering Practice , vol.11 , Issue.6 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 13
    • 0034235548 scopus 로고    scopus 로고
    • Using mixture principal component analysis networks to extract fuzzy rules from data
    • Chen, J.; Liu, J. Using mixture principal component analysis networks to extract fuzzy rules from data Ind. Eng. Chem. Res. 2000, 39, 2355-2367 (Pubitemid 30460549)
    • (2000) Industrial and Engineering Chemistry Research , vol.39 , Issue.7 , pp. 2355-2367
    • Chen, J.1    Liu, J.2
  • 14
    • 6344249065 scopus 로고    scopus 로고
    • Monitoring of processes with multiple operating modes through multiple principle component analysis models
    • Zhao, S. J.; Zhang, J.; Xu, Y. M. Monitoring of processes with multiple operation modes through multiple principle component analysis models Ind. Eng. Chem. Res. 2004, 43, 7025-7035 (Pubitemid 39403289)
    • (2004) Industrial and Engineering Chemistry Research , vol.43 , Issue.22 , pp. 7025-7035
    • Zhao, S.J.1    Zhang, J.2    Xu, Y.M.3
  • 15
    • 71849093181 scopus 로고    scopus 로고
    • Multivariate statistical monitoring of multiphase two-dimensional dynamic batch processes
    • Yao, Y.; Gao, F. R. Multivariate statistical monitoring of multiphase two-dimensional dynamic batch processes J. Process Control 2009, 19, 1716-1724
    • (2009) J. Process Control , vol.19 , pp. 1716-1724
    • Yao, Y.1    Gao, F.R.2
  • 16
    • 33746297394 scopus 로고    scopus 로고
    • Online fault diagnosis and state identification during process transitions using dynamic locus analysis
    • DOI 10.1016/j.ces.2006.05.037, PII S0009250906003496
    • Srinivasan, R; Qian, M. S. Online fault diagnosis and state identification during process transitions using dynamic locus analysis Chem. Eng. Sci. 2006, 61, 6109-6132 (Pubitemid 44107896)
    • (2006) Chemical Engineering Science , vol.61 , Issue.18 , pp. 6109-6132
    • Srinivasan, R.1    Sheng Qian, M.S.2
  • 18
    • 0027832206 scopus 로고
    • Start up plants safely
    • Nimmo, I. Start up plants safely Control Eng. Pract. 1993, 89, 66-69
    • (1993) Control Eng. Pract. , vol.89 , pp. 66-69
    • Nimmo, I.1
  • 19
    • 1942484899 scopus 로고    scopus 로고
    • Dynamic Principal Component Analysis Based Methodology for Clustering Process States in Agile Chemical Plants
    • Srinivasan, R.; Wang, C.; Ho, W. K.; Lim, K. W. Dynamic principal component analysis based methodology for clustering process states in agile chemical plants Ind. Eng. Chem. Res. 2004, 43, 2123-2139 (Pubitemid 38507181)
    • (2004) Industrial and Engineering Chemistry Research , vol.43 , Issue.9 , pp. 2123-2139
    • Srinivasan, R.1    Wang, C.2    Ho, W.K.3    Lim, K.W.4
  • 20
    • 35148823629 scopus 로고    scopus 로고
    • Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes
    • Zhao, C. H.; Wang, F. L.; Lu, N. Y.; Jia, M. X. Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes J. Process Control 2007, 17, 728-741
    • (2007) J. Process Control , vol.17 , pp. 728-741
    • Zhao, C.H.1    Wang, F.L.2    Lu, N.Y.3    Jia, M.X.4
  • 21
    • 83655196007 scopus 로고    scopus 로고
    • Process Pattern Construction and Multi-Mode Monitoring
    • doi: 10.1016/j.jprocont.2011.08.002.
    • Zhu, Z. B.; Song, Z. H.; Palazoglu, A. Process Pattern Construction and Multi-Mode Monitoring. J. Process Control 2011, doi: 10.1016/j.jprocont.2011.08. 002.
    • (2011) J. Process Control
    • Zhu, Z.B.1    Song, Z.H.2    Palazoglu, A.3
  • 22
    • 0036981048 scopus 로고    scopus 로고
    • Multivariate SPC for startups and grade transitions
    • DOI 10.1002/aic.690481216
    • Duchesne, C.; Kourti, T.; MacGregor, J. F. Multivariate SPC for Startups and Grade Transitions AIChE J. 2002, 48, 2890-2901 (Pubitemid 36172965)
    • (2002) AIChE Journal , vol.48 , Issue.12 , pp. 2890-2901
    • Duchesne, C.1    Kourti, T.2    MacGregor, J.F.3
  • 25
    • 0242288799 scopus 로고    scopus 로고
    • A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine
    • DOI 10.1016/S0925-2312(03)00433-8
    • Cao, L. J.; Chua, K. S.; Chong, W. K.; Lee, H. P.; Gu, Q. M. A comparison of PCA, KPCA and ICA for dimensionality reduction in support vector machine Neurocomputing 2003, 55, 321-336 (Pubitemid 37336682)
    • (2003) Neurocomputing , vol.55 , Issue.1-2 , pp. 321-336
    • Cao, L.J.1    Chua, K.S.2    Chong, W.K.3    Lee, H.P.4    Gu, Q.M.5
  • 26
    • 0033220728 scopus 로고    scopus 로고
    • Support vector domain description
    • DOI 10.1016/S0167-8655(99)00087-2
    • Tax, D. M. J.; Duin, R. P. W. Support vector domain description Pattern Recogn. Lett. 1999, 20, 1191-1199 (Pubitemid 32261897)
    • (1999) Pattern Recognition Letters , vol.20 , Issue.11-13 , pp. 1191-1199
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 27
    • 0942266514 scopus 로고    scopus 로고
    • Support vector data description
    • Tax, D. M. J.; Duin, R. P. W. Support vector data description Mach. Learn. 2004, 54, 45-66
    • (2004) Mach. Learn. , vol.54 , pp. 45-66
    • Tax, D.M.J.1    Duin, R.P.W.2
  • 28
    • 0036769410 scopus 로고    scopus 로고
    • Pattern matching in historical data
    • DOI 10.1002/aic.690480916
    • Johannesmeyer, M. C.; Singhal, A.; Seborg, D. E. Pattern matching in historical data AIChE J. 2002, 48, 2022-2038 (Pubitemid 36172990)
    • (2002) AIChE Journal , vol.48 , Issue.9 , pp. 2022-2038
    • Johannesmeyer, M.C.1    Singhal, A.2    Seborg, D.E.3
  • 29
    • 0042826822 scopus 로고    scopus 로고
    • Independent component analysis: Algorithms and applications
    • DOI 10.1016/S0893-6080(00)00026-5, PII S0893608000000265
    • Hyvärinen, A.; Oja, E. Independent component analysis: algorithms and applications Neural Network 2000, 13, 411-430 (Pubitemid 30447427)
    • (2000) Neural Networks , vol.13 , Issue.4-5 , pp. 411-430
    • Hyvarinen, A.1    Oja, E.2
  • 30
    • 1342285571 scopus 로고    scopus 로고
    • Statistical process monitoring with independent component analysis
    • Lee, J. M.; Yoo, C. K.; Lee, I. B. Statistical process monitoring with independent component analysis J. Process Control 2004, 14, 467-485
    • (2004) J. Process Control , vol.14 , pp. 467-485
    • Lee, J.M.1    Yoo, C.K.2    Lee, I.B.3
  • 32
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem Comput. Chem. Eng. 1993, 17, 245-255
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2
  • 34
    • 71849088402 scopus 로고    scopus 로고
    • Sensor fault identification and isolation for multivariate non-Gaussian processes
    • Ge, Z. Q.; Xie, L.; Kruger, U.; Lamont, L.; Song, Z. H.; Wang, S. Q. Sensor fault identification and isolation for multivariate non-Gaussian processes J. Process Control 2009, 19, 1707-1715
    • (2009) J. Process Control , vol.19 , pp. 1707-1715
    • Ge, Z.Q.1    Xie, L.2    Kruger, U.3    Lamont, L.4    Song, Z.H.5    Wang, S.Q.6
  • 35
    • 0029379330 scopus 로고
    • Optimal steady-state operation of the Tennessee Eastman challenge process
    • Ricker, N. L. Optimal steady-state operation of the Tennessee Eastman challenge process Comput. Chem. Eng. 1995, 19, 949-959
    • (1995) Comput. Chem. Eng. , vol.19 , pp. 949-959
    • Ricker, N.L.1
  • 36
    • 0030217795 scopus 로고    scopus 로고
    • Decentralized control of the Tennessee Eastman Challenge Process
    • DOI 10.1016/0959-1524(96)00031-5
    • Ricker, N. L. Decentralized control of the Tennessee Eastman challenge process J. Process Control 1996, 6, 205-221 (Pubitemid 126358692)
    • (1996) Journal of Process Control , vol.6 , Issue.4 , pp. 205-221
    • Ricker, N.L.1
  • 37
    • 0037084628 scopus 로고    scopus 로고
    • Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem
    • DOI 10.1016/S0098-1354(01)00738-4, PII S0098135401007384
    • Kano, M.; Nagao, K.; Hasebe, H.; Hashimoto, I.; Ohno, H.; Strauss, R.; Bakshi, B. R. Comparison of multivariate statistical process monitoring methods with applications to the Eastman challenge problem Comput. Chem. Eng. 2002, 26, 161-174 (Pubitemid 34211482)
    • (2002) Computers and Chemical Engineering , vol.26 , Issue.2 , pp. 161-174
    • Kano, M.1    Nagao, K.2    Hasebe, S.3    Hashimoto, I.4    Ohno, H.5    Strauss, R.6    Bakshi, B.R.7
  • 38
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a pattern matching method for the Tennessee Eastman challenge process
    • Singhal, A.; Seborg, D. E. Evaluation of a pattern matching method for the Tennessee Eastman challenge process J. Process Control 2006, 16, 601-613
    • (2006) J. Process Control , vol.16 , pp. 601-613
    • Singhal, A.1    Seborg, D.E.2
  • 39
    • 77955413170 scopus 로고    scopus 로고
    • Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis
    • Zhu, Z. B.; Song, Z. H. Fault diagnosis based on imbalance modified kernel Fisher discriminant analysis Chem. Eng. Res. Des. 2010, 88, 936-951
    • (2010) Chem. Eng. Res. Des. , vol.88 , pp. 936-951
    • Zhu, Z.B.1    Song, Z.H.2
  • 40
    • 79951579369 scopus 로고    scopus 로고
    • A novel fault diagnosis system using pattern classification on kernel FDA subspace
    • Zhu, Z. B.; Song, Z. H. A novel fault diagnosis system using pattern classification on kernel FDA subspace Exp. Sys. Appl. 2011, 38, 6895-6905
    • (2011) Exp. Sys. Appl. , vol.38 , pp. 6895-6905
    • Zhu, Z.B.1    Song, Z.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.