메뉴 건너뛰기




Volumn 48, Issue 9, 2002, Pages 2022-2038

Pattern matching in historical data

Author keywords

[No Author keywords available]

Indexed keywords

CHEMICAL REACTORS; COMPUTER SIMULATION; DATA REDUCTION; DATABASE SYSTEMS; PROBLEM SOLVING;

EID: 0036769410     PISSN: 00011541     EISSN: None     Source Type: Journal    
DOI: 10.1002/aic.690480916     Document Type: Article
Times cited : (105)

References (52)
  • 1
    • 0002644607 scopus 로고
    • Fast similarity search in the presence of noise, scaling and translation in time series databases
    • Zurich, Switzerland
    • Agrawal, R., K. Lin, H. S. Sawhney, and K. Shim, "Fast Similarity Search in the Presence of Noise, Scaling and Translation in Time Series Databases," Proc. Int. VLDB Conf., Zurich, Switzerland, p. 490 (1995).
    • (1995) Proc. Int. VLDB Conf. , pp. 490
    • Agrawal, R.1    Lin, K.2    Sawhney, H.S.3    Shim, K.4
  • 3
    • 0001977981 scopus 로고    scopus 로고
    • Data mining: An industrial research perspective
    • Apté, C., "Data Mining: An Industrial Research Perspective," IEEE Trans. Comput. Sci. Eng., 4, 6 (1997).
    • (1997) IEEE Trans. Comput. Sci. Eng. , vol.4 , pp. 6
    • Apté, C.1
  • 6
    • 0001946783 scopus 로고    scopus 로고
    • Process data, analysis and interpretation
    • J. Wei, J. L. Anderson, K. Bischoff, and J. Seinfeld, eds., Academic Press, New York
    • Davis, J. F., M. J. Piovoso, K. A. Kosanovich, and B. R. Bakshi, "Process Data Analysis and Interpretation," Advances in Chemical Engineering, Vol. 25, J. Wei, J. L. Anderson, K. Bischoff, and J. Seinfeld, eds., Academic Press, New York, p, 1 (1999).
    • (1999) Advances in Chemical Engineering , vol.25 , pp. 1
    • Davis, J.F.1    Piovoso, M.J.2    Kosanovich, K.A.3    Bakshi, B.R.4
  • 8
  • 11
    • 0028447023 scopus 로고
    • Fast subsequence matching in time series databases
    • Minneapolis, MN
    • Faloutsos, C., M. Ranganathan, and Y. Manolopoulos, "Fast Subsequence Matching in Time Series Databases," Proc. ACM SIGMOD-94, Minneapolis, MN, p. 419 (1994).
    • (1994) Proc. ACM SIGMOD-94 , pp. 419
    • Faloutsos, C.1    Ranganathan, M.2    Manolopoulos, Y.3
  • 12
    • 0030285403 scopus 로고    scopus 로고
    • The KDD process for extracting useful knowledge from volumes of data
    • Fayyad, U., G. Piatetsky-Shapiro, and P. Smyth, "The KDD Process for Extracting Useful Knowledge from Volumes of Data," Commun. ACM, 39, 27 (1996).
    • (1996) Commun. ACM , vol.39 , pp. 27
    • Fayyad, U.1    Piatetsky-Shapiro, G.2    Smyth, P.3
  • 18
    • 0027543492 scopus 로고
    • Representing bounded fault classes using neural networks with ellipsoidal activation functions
    • Kavuri, S. N., and V. Venkatasubramanian, "Representing Bounded Fault Classes Using Neural Networks With Ellipsoidal Activation Functions," Comput. Chem. Eng., 17, 139 (1993).
    • (1993) Comput. Chem. Eng. , vol.17 , pp. 139
    • Kavuri, S.N.1    Venkatasubramanian, V.2
  • 20
    • 85040241330 scopus 로고    scopus 로고
    • Dimensionality reduction for fast similarity search in large time series databases
    • Keogh, E., K. Chakrabarti, M. Pazzani, and S. Mehrotra, "Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases," Knowl. Inf. Syst., 3, 263(2001).
    • (2001) Knowl. Inf. Syst. , vol.3 , pp. 263
    • Keogh, E.1    Chakrabarti, K.2    Pazzani, M.3    Mehrotra, S.4
  • 21
    • 0028379050 scopus 로고
    • Artificial neural networks in fault diagnosis and control
    • Koivo, H., "Artificial Neural Networks in Fault Diagnosis and Control," Control Eng. Pract., 2, 89 (1994).
    • (1994) Control Eng. Pract. , vol.2 , pp. 89
    • Koivo, H.1
  • 22
    • 0030262558 scopus 로고    scopus 로고
    • Multivariate SPC methods for process and product monitoring
    • Kourti, T., and J. F. MacGregor, "Multivariate SPC Methods for Process and Product Monitoring," J. Qual. Technol., 28, 409 (1996).
    • (1996) J. Qual. Technol. , vol.28 , pp. 409
    • Kourti, T.1    MacGregor, J.F.2
  • 23
    • 0029703047 scopus 로고    scopus 로고
    • Experiences with industrial applications of projection methods for multivariate statistical process control
    • Kourti, T. J., J. Lee, and J. F. MacGregor, "Experiences with Industrial Applications of Projection Methods for Multivariate Statistical Process Control," Comput. Chem. Eng., 20, S745 (1996).
    • (1996) Comput. Chem. Eng. , vol.20
    • Kourti, T.J.1    Lee, J.2    MacGregor, J.F.3
  • 25
    • 84950659640 scopus 로고
    • Between-groups comparison of principal components
    • Krzanowski, W. J., "Between-Groups Comparison of Principal Components," J. Amer. Stat. Assoc., 74, 703 (1979).
    • (1979) J. Amer. Stat. Assoc. , vol.74 , pp. 703
    • Krzanowski, W.J.1
  • 26
    • 0028892168 scopus 로고
    • Disturbance detection and isolation by dynamic principal component analysis
    • Ku, W., R. H. Storer, and C. Georgakis, "Disturbance Detection and Isolation by Dynamic Principal Component Analysis," Chemometrics Intell. Lab. Syst., 30, 179 (1995).
    • (1995) Chemometrics Intell. Lab. Syst. , vol.30 , pp. 179
    • Ku, W.1    Storer, R.H.2    Georgakis, C.3
  • 27
    • 0029699446 scopus 로고    scopus 로고
    • An overview of multivariate statistical process control in continuous and batch performance monitoring
    • Martin, E. B., and A. J. Morris, "An Overview of Multivariate Statistical Process Control in Continuous and Batch Performance Monitoring," Trans. Inst. Meas. Control, 18, 51 (1996).
    • (1996) Trans. Inst. Meas. Control , vol.18 , pp. 51
    • Martin, E.B.1    Morris, A.J.2
  • 30
    • 0003382147 scopus 로고
    • Statistical process monitoring and disturbance isolation in multivariate continuous processes
    • Kyoto, Japan
    • Raich, A., and A. Çinar, "Statistical Process Monitoring and Disturbance Isolation in Multivariate Continuous Processes," Proc. IFAC-ADCHEM'94, Kyoto, Japan, p. 452 (1994).
    • (1994) Proc. IFAC-ADCHEM'94 , pp. 452
    • Raich, A.1    Çinar, A.2
  • 31
    • 0028784108 scopus 로고
    • Multivariate statistical methods for monitoring continuous processes: Assessment of discrimination power of disturbance models and diagnosis of multiple disturbances
    • Raich, A., and A. Çinar, "Multivariate Statistical Methods for Monitoring Continuous Processes: Assessment of Discrimination Power of Disturbance Models and Diagnosis of Multiple Disturbances," Chemometics Intell. Lab. Syst., 30, 37 (1995).
    • (1995) Chemometics Intell. Lab. Syst. , vol.30 , pp. 37
    • Raich, A.1    Çinar, A.2
  • 32
    • 0030127409 scopus 로고    scopus 로고
    • Statistical process monitoring and disturbance diagnosis in multivariate continuous processes
    • Raich, A., and A. Çinar, "Statistical Process Monitoring and Disturbance Diagnosis in Multivariate Continuous Processes," AIChE J., 42, 995 (1996).
    • (1996) AIChE J. , vol.42 , pp. 995
    • Raich, A.1    Çinar, A.2
  • 33
    • 0031062026 scopus 로고    scopus 로고
    • Diagnosis of process disturbances by statistical distance and angle measures
    • Raich, A., and A. Çinar, "Diagnosis of Process Disturbances by Statistical Distance and Angle Measures," Comput. Chem. Eng., 21, 661 (1997).
    • (1997) Comput. Chem. Eng. , vol.21 , pp. 661
    • Raich, A.1    Çinar, A.2
  • 35
    • 0013115776 scopus 로고    scopus 로고
    • Mining the genome
    • Regaldo, A., "Mining the Genome," Technol. Rev., 102(6), 56 (1999).
    • (1999) Technol. Rev. , vol.102 , Issue.6 , pp. 56
    • Regaldo, A.1
  • 36
    • 0030129206 scopus 로고    scopus 로고
    • Effect of process design on the open-loop behavior of a jacketed exothermic CSTR
    • Russo, L. P., and B. W. Bequette, "Effect of Process Design on the Open-Loop Behavior of a Jacketed Exothermic CSTR," Comput. Chem. Eng., 20, 417 (1996).
    • (1996) Comput. Chem. Eng. , vol.20 , pp. 417
    • Russo, L.P.1    Bequette, B.W.2
  • 40
    • 0034253944 scopus 로고    scopus 로고
    • Dynamic data rectification using the expectation maximization algorithm
    • Singhal, A., and D. E. Seborg, "Dynamic Data Rectification Using the Expectation Maximization Algorithm," AIChE J., 46, 1556 (2000).
    • (2000) AIChE J. , vol.46 , pp. 1556
    • Singhal, A.1    Seborg, D.E.2
  • 41
    • 0008040518 scopus 로고    scopus 로고
    • Probabilistic model-based clustering of multivariate and sequential data
    • D. Heckermann and J. Whittaker, eds., Los Gatos, CA
    • Smyth, P., "Probabilistic Model-Based Clustering of Multivariate and Sequential Data," Proc. Int. Workshop on AI and Statistics, D. Heckermann and J. Whittaker, eds., Los Gatos, CA (1999).
    • (1999) Proc. Int. Workshop on AI and Statistics
    • Smyth, P.1
  • 42
    • 0027624558 scopus 로고
    • Application of artificial neural networks in process fault diagnosis
    • Sorsa, T., and H. Koivo, "Application of Artificial Neural Networks in Process Fault Diagnosis," Automatica, 29, 843 (1993).
    • (1993) Automatica , vol.29 , pp. 843
    • Sorsa, T.1    Koivo, H.2
  • 44
    • 38249015646 scopus 로고
    • Representing and diagnosing dynamic process data using neural networks
    • Vaidyanathan, R., and V. Venkatasubramanian, "Representing and Diagnosing Dynamic Process Data Using Neural Networks," Eng. Appl. Artif Intell., 5, 11 (1992).
    • (1992) Eng. Appl. Artif Intell. , vol.5 , pp. 11
    • Vaidyanathan, R.1    Venkatasubramanian, V.2
  • 45
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the number of principal components: The variance of the reconstruction error criterion with a comparison to other methods
    • Valle, S., W. Li, and S. J. Qin, "Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to Other Methods," Ind. Eng. Chem. Res., 38, 4389 (1999).
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 4389
    • Valle, S.1    Li, W.2    Qin, S.J.3
  • 46
    • 0032825185 scopus 로고    scopus 로고
    • PCA-SDG based process monitoring and fault diagnosis
    • Vedam, H., and V. Venkatasubramanian, "PCA-SDG Based Process Monitoring and Fault Diagnosis," Control Eng. Pract., 26, 903 (1999).
    • (1999) Control Eng. Pract. , vol.26 , pp. 903
    • Vedam, H.1    Venkatasubramanian, V.2
  • 48
    • 0013158931 scopus 로고    scopus 로고
    • Knowledge discovery through mining process operational data
    • I. M., Mujtaba and M. A. Hussain, eds., Chap. 13, Imperial College Press London
    • Wang, X. Z., "Knowledge Discovery Through Mining Process Operational Data," Application of Neural Networks and Other Learning Technologies in Process Engineering, I. M. Mujtaba and M. A. Hussain, eds., Chap. 13, Imperial College Press, London, p. 287 (2001).
    • (2001) Application of Neural Networks and Other Learning Technologies in Process Engineering , pp. 287
    • Wang, X.Z.1
  • 49
    • 0032099625 scopus 로고    scopus 로고
    • Automatic classification for mining process operational data
    • Wang, X. Z., and C. McGreavy, "Automatic Classification for Mining Process Operational Data," Ind. Eng. Chem. Res., 37, 2215 (1998).
    • (1998) Ind. Eng. Chem. Res. , vol.37 , pp. 2215
    • Wang, X.Z.1    McGreavy, C.2
  • 50
    • 0028460720 scopus 로고
    • A similarity-based approach to interpretation of sensor data using adaptive-resonance theory
    • Whiteley, J. R., and J. F. Davis, "A Similarity-Based Approach to Interpretation of Sensor Data Using Adaptive-Resonance Theory," Comput. Chem. Eng., 18, 637 (1994).
    • (1994) Comput. Chem. Eng. , vol.18 , pp. 637
    • Whiteley, J.R.1    Davis, J.F.2
  • 52
    • 0029203961 scopus 로고
    • Fault detection and classification through multivariate statistical techniques
    • Washington, DC
    • Zhang, J., E. Martin, and A. J. Morris, "Fault Detection and Classification Through Multivariate Statistical Techniques," Proc. Amer. Control Conf., Washington, DC, p. 751 (1995).
    • (1995) Proc. Amer. Control Conf. , pp. 751
    • Zhang, J.1    Martin, E.2    Morris, A.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.