메뉴 건너뛰기




Volumn 222, Issue 10, 2008, Pages 1221-1232

Prediction of workpiece surface roughness using soft computing

Author keywords

Intelligent manufacturing systems; Soft computing; Surface roughness

Indexed keywords

ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; FORECASTING; FRICTION; FUZZY INFERENCE; FUZZY LOGIC; MACHINING; MACHINING CENTERS; METAL ANALYSIS; MILLING (MACHINING); MULTIVARIANT ANALYSIS; NEURAL NETWORKS; REGRESSION ANALYSIS; SOFT COMPUTING; SURFACE PROPERTIES; SURFACE ROUGHNESS;

EID: 56149083827     PISSN: 09544054     EISSN: None     Source Type: Journal    
DOI: 10.1243/09544054JEM1035     Document Type: Conference Paper
Times cited : (36)

References (25)
  • 1
    • 0038298770 scopus 로고    scopus 로고
    • Predicting surface roughness in machining: A review
    • Benardos, P. G. and Vosniakos, G.-C. Predicting surface roughness in machining: a review. Int. J. Machine Tools Mf., 2003, 43, 833-844.
    • (2003) Int. J. Machine Tools Mf , vol.43 , pp. 833-844
    • Benardos, P.G.1    Vosniakos, G.-C.2
  • 2
    • 0032652321 scopus 로고    scopus 로고
    • In-process surface roughness recognition (ISRR) system in end-milling operation
    • Lou, S. J. and Chen, J. C. In-process surface roughness recognition (ISRR) system in end-milling operation. Int. J. Advd Mfg Technol., 1999, 58, 100-108.
    • (1999) Int. J. Advd Mfg Technol , vol.58 , pp. 100-108
    • Lou, S.J.1    Chen, J.C.2
  • 3
    • 3242766806 scopus 로고    scopus 로고
    • A systematic approach for identifying optimum surface roughness performance in end-milling operations
    • Yang, J. and Chen, J. A systematic approach for identifying optimum surface roughness performance in end-milling operations. J. Ind. Technol., 2001, 17, 1-8.
    • (2001) J. Ind. Technol , vol.17 , pp. 1-8
    • Yang, J.1    Chen, J.2
  • 4
    • 0141959043 scopus 로고    scopus 로고
    • An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling
    • Lo, S.-P. An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling. J. Mater. Processing Technol., 2003, 142, 665-675.
    • (2003) J. Mater. Processing Technol , vol.142 , pp. 665-675
    • Lo, S.-P.1
  • 5
    • 0034808424 scopus 로고    scopus 로고
    • A fuzzy-net-based multilevel in-process surface roughness recognition system in milling operations
    • Chen, J. C. and Savage, M. A fuzzy-net-based multilevel in-process surface roughness recognition system in milling operations. Int. J. Advd Mfg Technol., 2001, 17, 670-676.
    • (2001) Int. J. Advd Mfg Technol , vol.17 , pp. 670-676
    • Chen, J.C.1    Savage, M.2
  • 6
    • 0033117056 scopus 로고    scopus 로고
    • An in-process surface recognition system based on neural networks in end milling cutting operations
    • Tsai, Y. H., Chen, J. C., and Lou, S.-J. An in-process surface recognition system based on neural networks in end milling cutting operations. Int. J. Machine Tools Mf., 1999, 39, 583-605.
    • (1999) Int. J. Machine Tools Mf , vol.39 , pp. 583-605
    • Tsai, Y.H.1    Chen, J.C.2    Lou, S.-J.3
  • 7
    • 0038004821 scopus 로고    scopus 로고
    • Surface roughness prediction technique for CNC end-milling
    • Lou, M. S., Chen, J. C., and Li, C. M. Surface roughness prediction technique for CNC end-milling. J. Ind. Engng, 1999, 15, 1-6.
    • (1999) J. Ind. Engng , vol.15 , pp. 1-6
    • Lou, M.S.1    Chen, J.C.2    Li, C.M.3
  • 9
    • 34247127046 scopus 로고    scopus 로고
    • Prediction of surface quality from ball-nose milling in high-speed machining applications
    • Liu, N. and Loftus, M. Prediction of surface quality from ball-nose milling in high-speed machining applications. Proc. IMechE, Part B: J. Engineering Manufacture, 2006, 220, 571-578.
    • (2006) Proc. IMechE, Part B: J. Engineering Manufacture , vol.220 , pp. 571-578
    • Liu, N.1    Loftus, M.2
  • 10
    • 0042301798 scopus 로고    scopus 로고
    • A multiple regression model to predict in-process surface roughness in turning operation via accelerometer
    • Huang, L. and Chen, J. A multiple regression model to predict in-process surface roughness in turning operation via accelerometer. J. Ind. Technol., 2001, 17, 1-8.
    • (2001) J. Ind. Technol , vol.17 , pp. 1-8
    • Huang, L.1    Chen, J.2
  • 11
    • 0037233403 scopus 로고    scopus 로고
    • Surface roughness predictive modeling: Neural networks versus regression
    • Feng, C.-X. and Wang, X.-F. Surface roughness predictive modeling: neural networks versus regression. IIE Trans., 2003, 35, 11-27.
    • (2003) IIE Trans , vol.35 , pp. 11-27
    • Feng, C.-X.1    Wang, X.-F.2
  • 12
    • 56149084103 scopus 로고    scopus 로고
    • Kirby, E. D., Zhang, Z., and Chen, J. C. Development of an accelerometer-based surface roughness prediction system in turning operations using multiple regression techniques. J. Ind. Technol., 2004, 20, 1-8.
    • Kirby, E. D., Zhang, Z., and Chen, J. C. Development of an accelerometer-based surface roughness prediction system in turning operations using multiple regression techniques. J. Ind. Technol., 2004, 20, 1-8.
  • 13
    • 34748885549 scopus 로고    scopus 로고
    • Application of radial basis function neural networks in optimization of hard turning of AISI D2 cold-worked tool steel with a ceramic tool
    • Basak, S., Dixit, U. S., and Davim, J. P. Application of radial basis function neural networks in optimization of hard turning of AISI D2 cold-worked tool steel with a ceramic tool. Proc. IMechE, Part B: J. Engineering Manufacture, 2007, 221, 987-998.
    • (2007) Proc. IMechE, Part B: J. Engineering Manufacture , vol.221 , pp. 987-998
    • Basak, S.1    Dixit, U.S.2    Davim, J.P.3
  • 15
    • 0036604089 scopus 로고    scopus 로고
    • Modeling and predicting surface roughness of the grinding process
    • Zhou, X. and Xi, F. Modeling and predicting surface roughness of the grinding process. Int. J. Machine Tools Mf., 2002, 42, 969-977.
    • (2002) Int. J. Machine Tools Mf , vol.42 , pp. 969-977
    • Zhou, X.1    Xi, F.2
  • 23
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J. S. R. ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Systems, Man and Cybernetics, 1993, 23, 665-685.
    • (1993) IEEE Trans. Systems, Man and Cybernetics , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 24
    • 28944449352 scopus 로고    scopus 로고
    • Selection and validation of predictive regression and neural network models based on designed experiments
    • Feng, C.-X., Yu, Z.-G., and Kusiak, A. Selection and validation of predictive regression and neural network models based on designed experiments. IIE Trans., 2006, 38, 13-23.
    • (2006) IIE Trans , vol.38 , pp. 13-23
    • Feng, C.-X.1    Yu, Z.-G.2    Kusiak, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.