메뉴 건너뛰기




Volumn 46, Issue 5-8, 2010, Pages 681-694

Design of multisensor fusion-based tool condition monitoring system in end milling

Author keywords

Machine ensemble; Multisensor fusion; Tool condition monitoring

Indexed keywords

ACOUSTIC EMISSION SENSORS; CLASSIFICATION METHODS; DECISION LEVEL FUSION; DESIGN COMPONENT; END MILL; END MILLING; ENSEMBLE TECHNIQUES; FEATURE LEVEL FUSION; FEATURE SELECTION METHODS; FEED BACK INFORMATION; FREQUENCY-DOMAIN DATA; FUSION METHODS; MAJORITY VOTING; MULTI SENSOR; MULTI-SENSOR FUSION; MULTIPLE SENSORS; PROCESS CONTROLLERS; REDUCED COMPLEXITY; SPINDLE POWER; TOOL CONDITION; TOOL CONDITION MONITORING;

EID: 74249109730     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-009-2110-z     Document Type: Article
Times cited : (100)

References (34)
  • 1
    • 0021691850 scopus 로고
    • On-line machine and process diagnostics
    • RL Kegg 1984 On-line machine and process diagnostics Ann CIRP 32 2 469 473
    • (1984) Ann CIRP , vol.32 , Issue.2 , pp. 469-473
    • Kegg, R.L.1
  • 2
    • 0031245008 scopus 로고    scopus 로고
    • A review of machine vision sensors for tool condition monitoring
    • 10.1016/S0166-3615(96)00075-9 10.1016/S0166-3615(96)00075-9
    • S Kurada C Bradley 1997 A review of machine vision sensors for tool condition monitoring Comput Ind 34 55 72 10.1016/S0166-3615(96)00075-9 10.1016/S0166-3615(96)00075-9
    • (1997) Comput Ind , vol.34 , pp. 55-72
    • Kurada, S.1    Bradley, C.2
  • 3
    • 0026062847 scopus 로고
    • Process monitoring of tool wear in milling using cutting force signature
    • 10.1016/0890-6955(91)90051-4 10.1016/0890-6955(91)90051-4
    • MA Elbestawi TA Papazafiriou RX Du 1991 Process monitoring of tool wear in milling using cutting force signature Int J Mach Tools Manuf 31 1 55 73 10.1016/0890-6955(91)90051-4 10.1016/0890-6955(91)90051-4
    • (1991) Int J Mach Tools Manuf , vol.31 , Issue.1 , pp. 55-73
    • Elbestawi, M.A.1    Papazafiriou, T.A.2    Du, R.X.3
  • 4
    • 0032682357 scopus 로고    scopus 로고
    • Milling cutter breakage detection by discrete wavelet transform
    • 10.1016/S0957-4158(98)00049-X 10.1016/S0957-4158(98)00049-X
    • BY Lee YS Tarng 1999 Milling cutter breakage detection by discrete wavelet transform Mechatronics 9 225 234 10.1016/S0957-4158(98)00049-X 10.1016/S0957-4158(98)00049-X
    • (1999) Mechatronics , vol.9 , pp. 225-234
    • Lee, B.Y.1    Tarng, Y.S.2
  • 5
    • 34249721512 scopus 로고    scopus 로고
    • Cutting force based real-time estimation of tool wear in face milling using a combination of signal processing techniques
    • 10.1016/j.ymssp. 2007.01.004 10.1016/j.ymssp.2007.01.004
    • P Bhattacharyya D Senupta S Mukhopadhaya 2007 Cutting force based real-time estimation of tool wear in face milling using a combination of signal processing techniques Mech Syst Signal 21 6 2665 2683 10.1016/j.ymssp. 2007.01.004 10.1016/j.ymssp.2007.01.004
    • (2007) Mech Syst Signal , vol.21 , Issue.6 , pp. 2665-2683
    • Bhattacharyya, P.1    Senupta, D.2    Mukhopadhaya, S.3
  • 6
    • 0032661831 scopus 로고    scopus 로고
    • Tool breakage detection system using accelerometer sensor
    • 10.1023/A:1008980821787 10.1023/A:1008980821787
    • JC Chen W Chen 1999 Tool breakage detection system using accelerometer sensor J Intell Manuf 10 187 197 10.1023/A:1008980821787 10.1023/A:1008980821787
    • (1999) J Intell Manuf , vol.10 , pp. 187-197
    • Chen, J.C.1    Chen, W.2
  • 7
    • 33847050322 scopus 로고    scopus 로고
    • Tool condition monitoring in milling using vibration analysis
    • DOI 10.1080/00207540600677781, PII 768598322
    • I Yesilyurt H Ozturk 2007 Tool condition monitoring in milling using vibration analysis Int J Prod Res 45 4 1013 1028 10.1080/00207540600677781 1128.90481 10.1080/00207540600677781 (Pubitemid 46270638)
    • (2007) International Journal of Production Research , vol.45 , Issue.4 , pp. 1013-1028
    • Yesilyurt, I.1    Ozturk, H.2
  • 9
    • 0035094218 scopus 로고    scopus 로고
    • Acoustic emission-based tool breakage detector for micro-end milling operations
    • IN Tansel ME Trujillo WY Bao 2001 Acoustic emission-based tool breakage detector for micro-end milling operations Int J Model Simul 21 1 10 16
    • (2001) Int J Model Simul , vol.21 , Issue.1 , pp. 10-16
    • Tansel, I.N.1    Trujillo, M.E.2    Bao, W.Y.3
  • 10
    • 33749507805 scopus 로고    scopus 로고
    • Estimation of tool wear during CNC milling using neural network based sensor fusion
    • 10.1016/j.ymssp. 2005.10.010 10.1016/j.ymssp.2005.10.010
    • N Ghosh YB Ravi A Patra S Mukhopadhyay S Paul AR Mohanty AB Chattopadhyay 2007 Estimation of tool wear during CNC milling using neural network based sensor fusion Mech Syst Signal Process 21 466 479 10.1016/j.ymssp. 2005.10.010 10.1016/j.ymssp.2005.10.010
    • (2007) Mech Syst Signal Process , vol.21 , pp. 466-479
    • Ghosh, N.1    Ravi, Y.B.2    Patra, A.3    Mukhopadhyay, S.4    Paul, S.5    Mohanty, A.R.6    Chattopadhyay, A.B.7
  • 11
    • 10444225451 scopus 로고    scopus 로고
    • Tool breakage detection using support vector machine learning in a milling process
    • 10.1016/j.ijmachtools.2004.08.016 10.1016/j.ijmachtools.2004.08.016
    • S Cho S Asfour A Onar N Kaundinya 2005 Tool breakage detection using support vector machine learning in a milling process Int J Mach Tools Manuf 45 3 241 249 10.1016/j.ijmachtools.2004.08.016 10.1016/j.ijmachtools.2004.08.016
    • (2005) Int J Mach Tools Manuf , vol.45 , Issue.3 , pp. 241-249
    • Cho, S.1    Asfour, S.2    Onar, A.3    Kaundinya, N.4
  • 12
    • 34247116576 scopus 로고    scopus 로고
    • Study of a sensor platform for monitoring machining of aluminium and steel
    • DOI 10.1088/0957-0233/18/5/001, PII S0957023307276702, 001
    • P Norman A Kaplan M Rantatalo I Svenningsson 2007 Study of a sensor platform for monitoring machining of aluminum and steel Meas Sci Technol 18 1155 1166 10.1088/0957-0233/18/5/001 10.1088/0957-0233/18/5/001 (Pubitemid 46591468)
    • (2007) Measurement Science and Technology , vol.18 , Issue.5 , pp. 1155-1166
    • Norman, P.1    Kaplan, A.2    Rantatalo, M.3    Svenningsson, I.4
  • 13
    • 0042973472 scopus 로고
    • Multisensor data fusion: State of the art
    • Reddy YB (1992) Multisensor data fusion: state of the art. J Inf Sci Technol
    • (1992) J Inf Sci Technol
    • Reddy, Y.B.1
  • 14
    • 26844518850 scopus 로고    scopus 로고
    • State-of-the-art methods and results in tool condition monitoring: A review
    • DOI 10.1007/s00170-004-2038-2
    • AG Rehorn J Jiang PE Orban 2005 State-of-the-art methods and results in tool condition monitoring: a review Int J Adv Manuf Technol 26 693 710 10.1007/s00170-004-2038-2 10.1007/s00170-004-2038-2 (Pubitemid 41444225)
    • (2005) International Journal of Advanced Manufacturing Technology , vol.26 , Issue.7-8 , pp. 693-710
    • Rehorn, A.G.1    Jiang, J.2    Orban, P.E.3
  • 15
    • 0242360119 scopus 로고
    • Process monitoring in milling by pattern recognition
    • 10.1016/0888-3270(89)90055-1 10.1016/0888-3270(89)90055-1
    • MA Elbestawi J Marks T Papazafiriou 1989 Process monitoring in milling by pattern recognition Mech Syst Signal Process 3 3 305 315 10.1016/0888-3270(89) 90055-1 10.1016/0888-3270(89)90055-1
    • (1989) Mech Syst Signal Process , vol.3 , Issue.3 , pp. 305-315
    • Elbestawi, M.A.1    Marks, J.2    Papazafiriou, T.3
  • 16
    • 0032021497 scopus 로고    scopus 로고
    • Tool wear monitoring of turning operation by neural network and expert system classification of a feature set generated from multiple sensors
    • 10.1006/mssp. 1997.0123 10.1006/mssp.1997.0123
    • RG Silva RL Reuben SJ Wilcox 1998 Tool wear monitoring of turning operation by neural network and expert system classification of a feature set generated from multiple sensors Mech Syst Signal Process 12 2 319 332 10.1006/mssp. 1997.0123 10.1006/mssp.1997.0123
    • (1998) Mech Syst Signal Process , vol.12 , Issue.2 , pp. 319-332
    • Silva, R.G.1    Reuben, R.L.2    Wilcox, S.J.3
  • 17
    • 0036664145 scopus 로고    scopus 로고
    • On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research
    • 10.1006/mssp. 2001.1460 10.1006/mssp.2001.1460
    • B Sick 2002 On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research Mech Syst Signal Process 16 4 487 546 10.1006/mssp. 2001.1460 10.1006/mssp.2001.1460
    • (2002) Mech Syst Signal Process , vol.16 , Issue.4 , pp. 487-546
    • Sick, B.1
  • 19
    • 31044444738 scopus 로고    scopus 로고
    • Support vector machines-based fault diagnosis for turbo-pump rotor
    • DOI 10.1016/j.ymssp.2005.09.006, PII S0888327005001433
    • S Yuan F Chu 2006 Support vector machines-based fault diagnosis for turbo-pump rotor Mech Syst Signal Process 20 939 952 10.1016/j.ymssp. 2005.09.006 10.1016/j.ymssp.2005.09.006 (Pubitemid 43121167)
    • (2006) Mechanical Systems and Signal Processing , vol.20 , Issue.4 , pp. 939-952
    • Yuan, S.-F.1    Chu, F.-L.2
  • 21
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • UM Fayyad KB Irani 1993 Multi-interval discretization of continuous-valued attributes for classification learning IJCA 93 1022 1027
    • (1993) IJCA , vol.93 , pp. 1022-1027
    • Fayyad, U.M.1    Irani, K.B.2
  • 22
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • 10.1016/S0004-3702(97)00043-X 0904.68143 10.1016/S0004-3702(97)00043-X
    • R Kohavi GH John 1997 Wrappers for feature subset selection Artif Intell 97 273 324 10.1016/S0004-3702(97)00043-X 0904.68143 10.1016/S0004-3702(97)00043- X
    • (1997) Artif Intell , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 25
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • 10.1109/72.788640 10.1109/72.788640
    • VN Vapnik 1999 An overview of statistical learning theory IEEE Trans Neural Netw 10 5 988 999 10.1109/72.788640 10.1109/72.788640
    • (1999) IEEE Trans Neural Netw , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 27
    • 33846516584 scopus 로고    scopus 로고
    • Springer Science and Business Media, LLC. New York 1107.68072 10.1007/978-0-387-45528-0
    • Bishop CM (2006) Pattern recognition and machine learning. Springer Science and Business Media, LLC., New York
    • (2006) Pattern Recognition and Machine Learning
    • Bishop, C.M.1
  • 29
    • 0025507176 scopus 로고
    • Neural network ensembles
    • 10.1109/34.58871 10.1109/34.58871
    • LK Hansen P Salamon 1990 Neural network ensembles IEEE Trans Pattern Anal Mach Intell 12 10 993 1001 10.1109/34.58871 10.1109/34.58871
    • (1990) IEEE Trans Pattern Anal Mach Intell , vol.12 , Issue.10 , pp. 993-1001
    • Hansen, L.K.1    Salamon, P.2
  • 30
    • 0034250160 scopus 로고    scopus 로고
    • Experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • DOI 10.1023/A:1007607513941
    • TG Dietterich 2000 An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Mach Learn 40 2 139 157 10.1023/A:1007607513941 10.1023/A:1007607513941 (Pubitemid 30891936)
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 33
    • 0026692226 scopus 로고
    • Stacked generalization
    • 10.1016/S0893-6080(05)80023-1 10.1016/S0893-6080(05)80023-1
    • DH Wolpert 1992 Stacked generalization Neural Netw 5 241 259 10.1016/S0893-6080(05)80023-1 10.1016/S0893-6080(05)80023-1
    • (1992) Neural Netw , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 34
    • 8444229122 scopus 로고    scopus 로고
    • How to make stacking better and faster while also taking care of an unknown weakness
    • San Francisco, California
    • Seewald AK (2002) How to make stacking better and faster while also taking care of an unknown weakness. Proceedings of the 19th International Conference on Machine Learning, San Francisco, California
    • (2002) Proceedings of the 19th International Conference on Machine Learning
    • Seewald, A.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.