메뉴 건너뛰기




Volumn 209, Issue 10, 2009, Pages 4728-4738

Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion

Author keywords

Feature selection; Machine ensemble; Multisensor fusion; Tool condition monitoring

Indexed keywords

AUTOMATED MANUFACTURING ENVIRONMENTS; END MILLINGS; END MILLS; ENSEMBLE METHODS; FEATURE SELECTION; FEATURE SUBSETS; FLANK WEARS; FREQUENCY DOMAINS; MACHINE ENSEMBLE; MACHINE-LEARNING; MACHINING EXPERIMENTS; MACHINING PARAMETERS; MAJORITY VOTING; MULTI LAYERS; MULTI-SENSOR FUSION TECHNIQUES; MULTIPLE SENSORS; MULTISENSOR FUSION; SIMULTANEOUS DETECTIONS; SPINDLE POWER; STACKED GENERALIZATIONS; TOOL CONDITION MONITORING; TOOL CONDITIONS;

EID: 67349144405     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmatprotec.2008.11.038     Document Type: Article
Times cited : (87)

References (26)
  • 5
  • 6
    • 0000259511 scopus 로고    scopus 로고
    • Approximate statistical tests for comparing supervised classification learning algorithms
    • Dietterich T.G. Approximate statistical tests for comparing supervised classification learning algorithms. Neural Computation 10 7 (1998) 1895-1924
    • (1998) Neural Computation , vol.10 , Issue.7 , pp. 1895-1924
    • Dietterich, T.G.1
  • 7
    • 0002593344 scopus 로고
    • Multi-interval discretization of continuous-valued attributes for classification learning
    • Fayyad U.M., and Irani K.B. Multi-interval discretization of continuous-valued attributes for classification learning. IJCA 93 (1993) 1022-1027
    • (1993) IJCA , vol.93 , pp. 1022-1027
    • Fayyad, U.M.1    Irani, K.B.2
  • 10
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • Kohavi R., and john G.H. Wrappers for feature subset selection. Artificial Intelligence 97 (1997) 273-324
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    john, G.H.2
  • 11
    • 0021691850 scopus 로고
    • On-line machine and process diagnostics
    • Kegg R.L. On-line machine and process diagnostics. Annals of the CIRP 32 2 (1984) 469-473
    • (1984) Annals of the CIRP , vol.32 , Issue.2 , pp. 469-473
    • Kegg, R.L.1
  • 13
    • 0031245008 scopus 로고    scopus 로고
    • A review of machine vision sensors for tool condition monitoring
    • Kurada S., and Bradley C. A review of machine vision sensors for tool condition monitoring. Computers in Industry 34 (1997) 55-72
    • (1997) Computers in Industry , vol.34 , pp. 55-72
    • Kurada, S.1    Bradley, C.2
  • 14
    • 0032598161 scopus 로고    scopus 로고
    • Tool wear length estimation with a self-learning fuzzy inference algorithm in finish milling
    • Lei M., Yang X., and Yang S. Tool wear length estimation with a self-learning fuzzy inference algorithm in finish milling. International Journal of Advanced Manufacturing Technology 15 (1999) 537-545
    • (1999) International Journal of Advanced Manufacturing Technology , vol.15 , pp. 537-545
    • Lei, M.1    Yang, X.2    Yang, S.3
  • 17
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • Scholkopf B., Burges C.J.C., and Smola A.J. (Eds), Cambridge MIT Press
    • Platt J. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B., Burges C.J.C., and Smola A.J. (Eds). Advances in Kernel Methods-Support Vector Learning (1998), Cambridge MIT Press 185-208
    • (1998) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.1
  • 21
    • 8444229122 scopus 로고    scopus 로고
    • How to make stacking better and faster while also taking care of an unknown weakness
    • San Francisco, California
    • Seewald A.K. How to make stacking better and faster while also taking care of an unknown weakness. Proceedings of the 19th International Conference on Machine Learning. San Francisco, California (2002)
    • (2002) Proceedings of the 19th International Conference on Machine Learning
    • Seewald, A.K.1
  • 22
    • 0036664145 scopus 로고    scopus 로고
    • On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research
    • Sick B. On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research. Mechanical Systems and Signal Processing 16 4 (2002) 487-546
    • (2002) Mechanical Systems and Signal Processing , vol.16 , Issue.4 , pp. 487-546
    • Sick, B.1
  • 23
    • 0027642812 scopus 로고
    • Detection of tool breakage in milling operations-II. The neural network approach
    • Tansel I.N., and Mclaughlin C. Detection of tool breakage in milling operations-II. The neural network approach. Int. J. Mach. Tool. Manuf. 33 4 (1993) 545-558
    • (1993) Int. J. Mach. Tool. Manuf. , vol.33 , Issue.4 , pp. 545-558
    • Tansel, I.N.1    Mclaughlin, C.2
  • 24
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik V.N. An overview of statistical learning theory. IEEE Transactions on Neural Networks 10 5 (1999) 988-999
    • (1999) IEEE Transactions on Neural Networks , vol.10 , Issue.5 , pp. 988-999
    • Vapnik, V.N.1
  • 26
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D.H. Stacked generalization. Neural Networks 5 (1992) 241-259
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.