메뉴 건너뛰기




Volumn 22, Issue 4, 2011, Pages 607-617

Surface roughness monitoring application based on artificial neural networks for ball-end milling operations

Author keywords

Ball end mill; Cutting parameters; Neural network modeling; Process monitoring; Surface roughness

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORK APPROACH; BALL END MILL; BALL END MILLING; CUTTING PARAMETERS; DYNAMIC FACTORS; HIGH SPEED MILLING; MACHINING PROCESS; MONITORING APPLICATIONS; NEURAL NETWORK MODELING; ONLINE MONITORING; PART GEOMETRY; PIEZO-ELECTRIC ACCELEROMETERS;

EID: 80053459850     PISSN: 09565515     EISSN: 15728145     Source Type: Journal    
DOI: 10.1007/s10845-009-0323-5     Document Type: Article
Times cited : (96)

References (27)
  • 1
    • 0035803629 scopus 로고    scopus 로고
    • Surface roughness prediction based on cutting parameters and tool vibrations in turning operations
    • DOI 10.1016/S0924-0136(01)00959-1, PII S0924013601009591
    • Abouelatta, O. B., & Mádl, J. (2001). Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. Journal of Materials Processing Technology, 118(1- 3), 269-277. (Pubitemid 33147998)
    • (2001) Journal of Materials Processing Technology , vol.118 , Issue.1-3 , pp. 269-277
    • Abouelatta, O.B.1    Madl, J.2
  • 2
    • 80053442831 scopus 로고    scopus 로고
    • ASCAMM Technology Centre
    • ASCAMM Technology Centre, cutOPT. http://www.youtube.com/ watch?v=v5nJZodMemY.
    • CutOPT
  • 4
    • 0043156348 scopus 로고    scopus 로고
    • Integrated genetic programming and genetic algorithm approach to predict surface roughness
    • Brezocnik, M., & Kovacic, M. (2003). Integrated genetic programming and genetic algorithm approach to predict surface roughness. Materials and Manufacturing Processes, 18(3), 475-491.
    • (2003) Materials and Manufacturing Processes , vol.18 , Issue.3 , pp. 475-491
    • Brezocnik, M.1    Kovacic, M.2
  • 6
    • 33846794445 scopus 로고    scopus 로고
    • In-process surface roughness prediction using displacement signals from spindle motion
    • DOI 10.1016/j.ijmachtools.2006.07.004, PII S0890695506001933
    • Chang, H., Kim, J., Kim, I. H., Jang, D. Y., & Han, D. C. (2007). Inprocess surface roughness prediction using displacement signals from spindle motion. International Journal of Machine Tools and Manufacture, 47(6), 1021-1026. (Pubitemid 46205138)
    • (2007) International Journal of Machine Tools and Manufacture , vol.47 , Issue.6 , pp. 1021-1026
    • Chang, H.-K.1    Kim, J.-H.2    Kim, I.H.3    Jang, D.Y.4    Han, D.C.5
  • 7
    • 0042802940 scopus 로고    scopus 로고
    • Fuzzy-nets based approach to using an accelerometer for an in-process surface roughness prediction system in milling operations
    • Chen, J. C., & Lou, M. S. (2000). Fuzzy-nets based approach to using an accelerometer for an in-process surface roughness prediction system in milling operations. International Journal of Computer Integrated Manufacturing, 13(4), 358-368.
    • (2000) International Journal of Computer Integrated Manufacturing , vol.13 , Issue.4 , pp. 358-368
    • Chen, J.C.1    Lou, M.S.2
  • 8
    • 0029533738 scopus 로고
    • Predicting quality characteristics of end-milled parts based on multi-sensor integration using neural networks: Individual effects of learning parameters and rules
    • Chukwujekwu Okafor, A., & Adetona, O. (1995). Predicting quality characteristics of end-milled parts based on multi-sensor integration using neural networks: individual effects of learning parameters and rules. Journal of Intelligent Manufacturing, 6(6), 389-400.
    • (1995) Journal of Intelligent Manufacturing , vol.6 , Issue.6 , pp. 389-400
    • Chukwujekwu Okafor, A.1    Adetona, O.2
  • 9
    • 77953628331 scopus 로고    scopus 로고
    • Neural network modeling the influence of process parameters on feature geometry and surface quality in pulsed laser micro-machining of hardened AISI H13 steel
    • Ciurana, J., Arias, G., & Ozel, T. (2009). Neural network modeling the influence of process parameters on feature geometry and surface quality in pulsed laser micro-machining of hardened AISI H13 steel. Materials and Manufacturing Processes, 24(3), 1-11.
    • (2009) Materials and Manufacturing Processes , vol.24 , Issue.3 , pp. 1-11
    • Ciurana, J.1    Arias, G.2    Ozel, T.3
  • 10
    • 58349093492 scopus 로고    scopus 로고
    • Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process
    • Correa, M., Bielza, C., & Pamies-Teixeira, J. (2009). Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process. Expert systems with applications.
    • (2009) Expert Systems with Applications
    • Correa, M.1    Bielza, C.2    Pamies-Teixeira, J.3
  • 11
    • 55749096392 scopus 로고    scopus 로고
    • A Bayesian network model for surface roughness prediction in the machining process
    • Correa, M., Bielza, C., Ramirez, M. D. J., & Alique, J. R. (2008). A Bayesian network model for surface roughness prediction in the machining process. International Journal of Systems Science, 39(12), 1181-1192.
    • (2008) International Journal of Systems Science , vol.39 , Issue.12 , pp. 1181-1192
    • Correa, M.1    Bielza, C.2    Ramirez, M.D.J.3    Alique, J.R.4
  • 12
    • 0031232958 scopus 로고    scopus 로고
    • A review of ultra high speed milling of hardened steels
    • Dewes, R. C., & Aspinwall, D. K. (1997). A review of ultra high speed milling of hardened steels. Journal of Materials Processing Technology, 69(1-3), 1-17. (Pubitemid 127675790)
    • (1997) Journal of Materials Processing Technology , vol.69 , Issue.1-3 , pp. 1-17
    • Dewes, R.C.1    Aspinwall, D.K.2
  • 13
    • 0037144746 scopus 로고    scopus 로고
    • Study of tool life, surface roughness and viberation in machinning nodular cast iron with ceramic tool
    • Ghani, A. K., Choudhury, I. A., & Husni (2002). Study of tool life, surface roughness and viberation in machinning nodular cast iron with ceramic tool. Journal of Materials Processing Technology, 127(1), 17-22.
    • (2002) Journal of Materials Processing Technology , vol.127 , Issue.1 , pp. 17-22
    • Ghani, A.K.1    Choudhury, I.A.2    Husni3
  • 14
    • 42749095327 scopus 로고    scopus 로고
    • Influence of tool wear on surface roughness in hard turning using differently shaped ceramic tools
    • Grzesik, W. (2008). Influence of tool wear on surface roughness in hard turning using differently shaped ceramic tools. Wear, 265(3-4), 327-335.
    • (2008) Wear , vol.265 , Issue.3-4 , pp. 327-335
    • Grzesik, W.1
  • 16
    • 0037277630 scopus 로고    scopus 로고
    • An in-process neural networkbased surface roughness prediction (INN-SRP) system using a dynamometer in end milling operations
    • Huang, B., & Chen, J. C. (2003). An in-process neural networkbased surface roughness prediction (INN-SRP) system using a dynamometer in end milling operations. International Journal of Advanced Manufacturing Technology, 21(5), 339-347.
    • (2003) International Journal of Advanced Manufacturing Technology , vol.21 , Issue.5 , pp. 339-347
    • Huang, B.1    Chen, J.C.2
  • 17
    • 80053458080 scopus 로고    scopus 로고
    • Machine Tools for High Performance of surface roughness in electrical discharge machining
    • López, de., Lacalle, L. N., & Lamikiz A. (Eds.). (2008). Machine Tools for High Performance of surface roughness in electrical discharge machining. Journal of Intelligent Manufacturing, 19(3), 283-292.
    • (2008) Journal of Intelligent Manufacturing , vol.19 , Issue.3 , pp. 283-292
    • López, D.1    Lacalle, L.N.2    Lamikiz, A.3
  • 18
    • 84926330861 scopus 로고
    • An analysis of the milling process
    • Martellotti, M. E. (1941). An analysis of the milling process. Transactions of ASME, 63, 667.
    • (1941) Transactions of ASME , vol.63 , pp. 667
    • Martellotti, M.E.1
  • 19
    • 85146249471 scopus 로고
    • An analysis of the milling process. Part II: Down milling
    • Martellotti, M. E. (1945). An analysis of the milling process. Part II: Down milling. Transactions of ASME, 67, 233-649.
    • (1945) Transactions of ASME , vol.67 , pp. 233-649
    • Martellotti, M.E.1
  • 21
    • 77953638896 scopus 로고    scopus 로고
    • Surface roughness generation and material removal rate in ball end milling operations
    • In press
    • Quintana, G., Ribatallada, J., & Ciurana, Q. (2010). Surface roughness generation and material removal rate in ball end milling operations. Materials and manufacturing processes. (In press).
    • (2010) Materials and Manufacturing Processes
    • Quintana, G.1    Ribatallada, J.2    Ciurana, Q.3
  • 22
    • 0037427589 scopus 로고    scopus 로고
    • Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process
    • DOI 10.1016/S0924-0136(02)00920-2, PII S0924013602009202
    • Risbood, K. A., Dixit, U. S., & Sahasrabudhe, A. D. (2003). Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process. Journal of Materials Processing Technology, 132(1-3), 203-214. (Pubitemid 35433584)
    • (2003) Journal of Materials Processing Technology , vol.132 , Issue.1-3 , pp. 203-214
    • Risbood, K.A.1    Dixit, U.S.2    Sahasrabudhe, A.D.3
  • 23
    • 56149083827 scopus 로고    scopus 로고
    • Prediction of workpiece surface roughness using soft computing. Proceedings of the Institution of Mechanical Engineers. Part B
    • Samanta, B., Erevelles, W., & Omurtag, Y. (2008). Prediction of workpiece surface roughness using soft computing. Proceedings of the Institution of Mechanical Engineers. Part B: Journal of Engineering Manufacture, 222(10), 1221-1232.
    • (2008) Journal of Engineering Manufacture , vol.222 , Issue.10 , pp. 1221-1232
    • Samanta, B.1    Erevelles, W.2    Omurtag, Y.3
  • 24
    • 46249124721 scopus 로고    scopus 로고
    • Estimation of cutting forces and surface roughness for hard turning using neural networks
    • Sharma, V. S., Dhiman, S., Sehgal, R., & Sharma, S. K. (2008). Estimation of cutting forces and surface roughness for hard turning using neural networks. Journal of IntelligentManufacturing, 19(4), 473-483.
    • (2008) Journal of IntelligentManufacturing , vol.19 , Issue.4 , pp. 473-483
    • Sharma, V.S.1    Dhiman, S.2    Sehgal, R.3    Sharma, S.K.4
  • 25
    • 0030402844 scopus 로고    scopus 로고
    • Effect of tool vibrations on surface roughness during lathe dry turning process
    • Thomas, M., Beauchamp, Y., Youssef, A. Y., & Masounave, J. (1996). Effect of tool vibrations on surface roughness during lathe dry turning process. Computers & Industrial Engineering, Elsevier, 31(3/4), 637-644. (Pubitemid 126651673)
    • (1996) Computers and Industrial Engineering , vol.31 , Issue.3-4 , pp. 637-644
    • Thomas, M.1    Beauchamp, Y.2    Youssef, A.Y.3    Masounave, J.4
  • 26
    • 0033117056 scopus 로고    scopus 로고
    • An in-process surface recognition system based on neural networks in end milling cutting operations
    • Tsai, Y., Chen, J. C., & Lou, S. (1999). An in-process surface recognition system based on neural networks in end milling cutting operations. International Journal of Machine Tools and Manufacture, 39(4), 583-605.
    • (1999) International Journal of Machine Tools and Manufacture , vol.39 , Issue.4 , pp. 583-605
    • Tsai, Y.1    Chen, J.C.2    Lou, S.3
  • 27
    • 34547697585 scopus 로고    scopus 로고
    • The development of an in-process surface roughness adaptive control system in turning operations
    • DOI 10.1007/s10845-007-0024-x
    • Zhang, J. Z., Chen, J. C., & Kirby, E. D. (2007). The development of an in-process surface roughness adaptive control system in turning operations. Journal of IntelligentManufacturing, 18(3), 301-311. (Pubitemid 47209687)
    • (2007) Journal of Intelligent Manufacturing , vol.18 , Issue.3 , pp. 301-311
    • Zhang, J.Z.1    Chen, J.C.2    Kirby, E.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.