메뉴 건너뛰기




Volumn 10, Issue 1, 2011, Pages 187-206

Ensemble of software defect predictors: An AHP-based evaluation method

Author keywords

classification; Ensemble; software defect prediction; the analytic hierarchy process (AHP)

Indexed keywords


EID: 78751522102     PISSN: 02196220     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219622011004282     Document Type: Article
Times cited : (167)

References (66)
  • 2
    • 49349089233 scopus 로고    scopus 로고
    • Benchmarking classification models for software defect prediction: A proposed framework and novel findings
    • S. Lessmann, B. Baesens, C. Mues and S. Pietsch, Benchmarking classification models for software defect prediction: A proposed framework and novel findings, IEEE Transactions on Software Engineering 34(4) 2008, 485-496.
    • (2008) IEEE Transactions on Software Engineering , vol.34 , Issue.4 , pp. 485-496
    • Lessmann, S.1    Baesens, B.2    Mues, C.3    Pietsch, S.4
  • 5
    • 0031192278 scopus 로고    scopus 로고
    • Application of neural networks to software quality modeling of a very large telecommunications system
    • T. M. Khoshgoftaar, E. B. Allen, J. P. Hudepohl and S. J. Aud, Application of neural networks to software quality modeling of a very large telecommunications system, IEEE Transactions on Neural Networks 8(4) 1997, 902-909.
    • (1997) IEEE Transactions on Neural Networks , vol.8 , Issue.4 , pp. 902-909
    • Khoshgoftaar, T.M.1    Allen, E.B.2    Hudepohl, J.P.3    Aud, S.J.4
  • 7
    • 0036891333 scopus 로고    scopus 로고
    • Using regression trees to classify faultprone software modules
    • T. M. Khoshgoftaar, E. B. Allen and J. Deng, Using regression trees to classify faultprone software modules, IEEE Transactions on Reliability 51(4) 2002, 455-462.
    • (2002) IEEE Transactions on Reliability , vol.51 , Issue.4 , pp. 455-462
    • Khoshgoftaar, T.M.1    Allen, E.B.2    Deng, J.3
  • 8
    • 0141924286 scopus 로고    scopus 로고
    • Analogy-based practical classification rules for software quality estimation
    • T. M. Khoshgoftaar and N. Seliya, Analogy-based practical classification rules for software quality estimation, Empirical Software Engineering 8(4) (2003) 325-350.
    • (2003) Empirical Software Engineering , vol.8 , Issue.4 , pp. 325-350
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 10
    • 0006473387 scopus 로고
    • Evaluating techniques for generating metric-based classification trees
    • A. A. Porter and R. W. Selby, Evaluating techniques for generating metric-based classification trees, Journal of Systems and Software 12(3) (1990) 209-218.
    • (1990) Journal of Systems and Software , vol.12 , Issue.3 , pp. 209-218
    • Porter, A.A.1    Selby, R.W.2
  • 11
    • 0035152294 scopus 로고    scopus 로고
    • Comparing case-based reasoning classifiers for predicting high risk software components
    • K. El-Emam, S. Benlarbi, N. Goel and S. N. Rai, Comparing case-based reasoning classifiers for predicting high risk software components, Journal of Systems and Software 55(3) (2001) 301-310.
    • (2001) Journal of Systems and Software , vol.55 , Issue.3 , pp. 301-310
    • El-Emam, K.1    Benlarbi, S.2    Goel, N.3    Rai, S.N.4
  • 13
    • 40749135790 scopus 로고    scopus 로고
    • Predicting defect-prone software modules using support vector machines
    • K. O. Elish and M. O. Elish, Predicting defect-prone software modules using support vector machines, Journal of Systems and Software 81(5) (2008) 649-660.
    • (2008) Journal of Systems and Software , vol.81 , Issue.5 , pp. 649-660
    • Elish, K.O.1    Elish, M.O.2
  • 15
    • 84857575716 scopus 로고    scopus 로고
    • User p based software defect detection algorithms selection using MCDM
    • doi:10.1016/j.ins.2010.04.019
    • Y. Peng, G. Wang and H. Wang, User p based software defect detection algorithms selection using MCDM, Information Sciences (2010), doi: 10.1016/j.ins.2010.04.019.
    • (2010) Information Sciences
    • Peng, Y.1    Wang, G.2    Wang, H.3
  • 18
    • 0033161922 scopus 로고    scopus 로고
    • A controlled experiment to assess the benefits of estimating with analogy and regression models
    • I. Myrtveit and E. Stensrud, A controlled experiment to assess the benefits of estimating with analogy and regression models, IEEE Transactions on Software Engineering 25(4) 1999,510-525.
    • (1999) IEEE Transactions on Software Engineering , vol.25 , Issue.4 , pp. 510-525
    • Myrtveit, I.1    Stensrud, E.2
  • 19
    • 22944440671 scopus 로고    scopus 로고
    • Reliability and validity in comparative studies of software prediction models
    • I. Myrtveit, E. Stensrud and M. Shepperd, Reliability and validity in comparative studies of software prediction models, IEEE Transactions on Software Engineering 31(5) 2005,380-391.
    • (2005) IEEE Transactions on Software Engineering , vol.31 , Issue.5 , pp. 380-391
    • Myrtveit, I.1    Stensrud, E.2    Shepperd, M.3
  • 20
    • 0035506767 scopus 로고    scopus 로고
    • Comparing software prediction techniques using simulation
    • DOI 10.1109/32.965341
    • M. Shepperd and G. Kadoda, Comparing software prediction techniques using simulation, IEEE Transactions on Software Engineering 27(11) 2001, 1014-1022. (Pubitemid 33106029)
    • (2001) IEEE Transactions on Software Engineering , vol.27 , Issue.11 , pp. 1014-1022
    • Shepperd, M.1    Kadoda, G.2
  • 23
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • T. G. Dietterich, An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization, Machine Learning 40(2) (2000) 139-157.
    • (2000) Machine Learning , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 25
    • 0031361611 scopus 로고    scopus 로고
    • Machine learning research: Four current directions
    • T. G. Dietterich, Machine learning research: Four current directions, AI Magazine 18 (1997) 97-136.
    • (1997) AI Magazine , vol.18 , pp. 97-136
    • Dietterich, T.G.1
  • 26
    • 0142103425 scopus 로고    scopus 로고
    • A study of adaboost with naïive Bayesian classifiers: Weakness and improvement
    • K. M. Ting and Z. Zheng, A study of AdaBoost with Naïive Bayesian classifiers: Weakness and improvement, Computational Intelligence 19(2) (2003) 186-200.
    • (2003) Computational Intelligence , vol.19 , Issue.2 , pp. 186-200
    • Ting, K.M.1    Zheng, Z.2
  • 27
    • 33646867863 scopus 로고    scopus 로고
    • Recognizing strong and weak opinion clauses
    • T. Wilson, J. Wiebe and R. Hwa, Recognizing strong and weak opinion clauses, Computational Intelligence 22(2) (2006) 73-99.
    • (2006) Computational Intelligence , vol.22 , Issue.2 , pp. 73-99
    • Wilson, T.1    Wiebe, J.2    Hwa, R.3
  • 31
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • E. Bauer and R. Kohavi, An empirical comparison of voting classification algorithms: Bagging, boosting, and variants, Machine Learning 36(1/2) (1999) 105-139.
    • (1999) Machine Learning , vol.36 , Issue.1-2 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 32
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman, Bagging predictors, Machine Learning 24(2) (1996) 123-140.
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 33
    • 0030344230 scopus 로고
    • Heuristics of instability in model selection
    • L. Breiman, Heuristics of instability in model selection, The Annals of Statistics 24(6) (1994) 2350-2383.
    • (1994) The Annals of Statistics , vol.24 , Issue.6 , pp. 2350-2383
    • Breiman, L.1
  • 35
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • R. Schapire, The strength of weak learnability, Machine Learning 5(2) (1990) 197-227.
    • (1990) Machine Learning , vol.5 , Issue.2 , pp. 197-227
    • Schapire, R.1
  • 36
    • 0031211090 scopus 로고    scopus 로고
    • A decision-theoretic generalization of on-line learning and an application to boosting
    • Y. Freund and R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, Journal of Computer and System Sciences 55 (1997) 119-139.
    • (1997) Journal of Computer and System Sciences , vol.55 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 37
    • 0026692226 scopus 로고
    • Stacked generalization
    • D. H. Wolpert, Stacked generalization, Neural Networks 5 (1992) 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.H.1
  • 40
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Tesauro, G., Touretzky, D. and Leen, T. eds., Cambridge, MA, MIT Press
    • A. Krogh and J. Vedelsby, Neural network ensembles, cross validation, and active learning, in Tesauro, G., Touretzky, D. and Leen, T. (eds.), Advances in Neural Information Processing Systems, Vol. 7 (Cambridge, MA, MIT Press, 1995), pp. 231-238.
    • (1995) Advances in Neural Information Processing Systems , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 42
    • 85156137079 scopus 로고    scopus 로고
    • Scaling up the accuracy of Naïive Bayes classifiers: A decision tree hybrid
    • E. Simoudis, J. W. Han and U. Fayyad eds. , Portland, OR. Menlo Park, CA, AAAI Press
    • R. Kohavi, Scaling up the accuracy of Naïive Bayes classifiers: A decision tree hybrid, in E. Simoudis, J. W. Han and U. Fayyad (eds.), Proceedings of the Second International Conference on Knowledge Discovery and Data Mining (Portland, OR. Menlo Park, CA, AAAI Press, 1996), pp. 202-207.
    • (1996) Proceedings of the Second International Conference on Knowledge Discovery and Data Mining , pp. 202-207
    • Kohavi, R.1
  • 44
    • 0000521473 scopus 로고
    • Ridge estimators in logistic regression
    • S. Le Cessie and J. C. Houwelingen, Ridge estimators in logistic regression, Applied Statistics 41(1) (1992) 191-201.
    • (1992) Applied Statistics , vol.41 , Issue.1 , pp. 191-201
    • Le Cessie, S.1    Houwelingen, J.C.2
  • 46
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • B. Schotolkopf, C. J. C. Burges and A. Smola eds., MIT Press
    • J. C. Platt, Fast training of support vector machines using sequential minimal optimization, in B. Schotolkopf, C. J. C. Burges and A. Smola (eds.), Advances in Kernel Methods-Support Vector Learning (MIT Press, 1998), pp. 185-208.
    • (1998) Advances in Kernel Methods-Support Vector Learning , pp. 185-208
    • Platt, J.C.1
  • 48
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • P. Domingos and M. Pazzani, On the optimality of the simple Bayesian classifier under zero-one loss, Machine Learning 29(203) (1997) 103-130.
    • (1997) Machine Learning , vol.29 , Issue.203 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 51
    • 84948977233 scopus 로고
    • The power of decision tables
    • N. Lavrac and S. Wrobel eds., Springer-Verlag, Iraklion, Crete, Greece
    • R. Kohavi, The power of decision tables, in N. Lavrac and S. Wrobel (eds.), Proceedings of the Eighth European Conference on Machine Learning (Springer-Verlag, Iraklion, Crete, Greece, 1995), pp. 174-189.
    • (1995) Proceedings of the Eighth European Conference on Machine Learning , pp. 174-189
    • Kohavi, R.1
  • 53
    • 0025700933 scopus 로고
    • How to make a decision: The analytic hierarchy process
    • T. L. Saaty, How to make a decision: The analytic hierarchy process, European Journal of Operational Research 48 (1990) 9-26.
    • (1990) European Journal of Operational Research , vol.48 , pp. 9-26
    • Saaty, T.L.1
  • 55
    • 53449102906 scopus 로고    scopus 로고
    • Decision making with the analytic hierarchy process
    • T. L. Saaty, Decision making with the analytic hierarchy process, International Journal of Services Sciences 1(1) (2008) 83-98.
    • (2008) International Journal of Services Sciences , vol.1 , Issue.1 , pp. 83-98
    • Saaty, T.L.1
  • 56
    • 49449122896 scopus 로고
    • A scaling method for priorities in hierarchical structures
    • T. L. Saaty, A scaling method for priorities in hierarchical structures, Journal of Mathematical Psychology 15(3) (1977) 234-281.
    • (1977) Journal of Mathematical Psychology , vol.15 , Issue.3 , pp. 234-281
    • Saaty, T.L.1
  • 57
    • 0002425683 scopus 로고
    • The analytic hierarchy process-a survey of the method and its applications
    • F. Zahedi, The analytic hierarchy process-a survey of the method and its applications, Interfaces 16(4) (1986) 96-108.
    • (1986) Interfaces , vol.16 , Issue.4 , pp. 96-108
    • Zahedi, F.1
  • 58
    • 35348994805 scopus 로고    scopus 로고
    • Integrated analytic hierarchy process and its applications - A literature review
    • W. Ho, Integrated analytic hierarchy process and its applications - A literature review, European Journal of Operational Research 186(1) 211-228.
    • European Journal of Operational Research , vol.186 , Issue.1 , pp. 211-228
    • Ho, W.1
  • 59
    • 0035414668 scopus 로고    scopus 로고
    • Interval evaluations in the analytic hierarchy process by possibility analysis
    • K. Sugihara and H. Tanaka, Interval evaluations in the analytic hierarchy process by possibility analysis, Computational Intelligence 17(3) (2001) 567-579.
    • (2001) Computational Intelligence , vol.17 , Issue.3 , pp. 567-579
    • Sugihara, K.1    Tanaka, H.2
  • 60
    • 45749089732 scopus 로고    scopus 로고
    • Ranking decision alternatives by integrated DEA, AHP and gower plot techniques
    • H. Li and L. Ma, Ranking decision alternatives by integrated DEA, AHP and gower plot techniques, International Journal of Information Technology & Decision Making 7(2) (2008) 241-258.
    • (2008) International Journal of Information Technology & Decision Making , vol.7 , Issue.2 , pp. 241-258
    • Li, H.1    Ma, L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.