메뉴 건너뛰기




Volumn 9, Issue 6, 2010, Pages 905-934

High utility itemsets mining

Author keywords

business intelligence; Data mining; utility mining

Indexed keywords


EID: 78149261542     PISSN: 02196220     EISSN: None     Source Type: Journal    
DOI: 10.1142/S0219622010004159     Document Type: Article
Times cited : (12)

References (30)
  • 3
    • 58149235001 scopus 로고    scopus 로고
    • A descriptive framework for the field of data mining and knowledge discovery
    • Y. Peng, G. Kou, Y. Shi and Z. Chen, A descriptive framework for the field of data mining and knowledge discovery, J. Inform. Technol. Decis. Making 7 (4) (2008) 639-682.
    • (2008) J. Inform. Technol. Decis. Making , vol.7 , Issue.4 , pp. 639-682
    • Peng, Y.1    Kou, G.2    Shi, Y.3    Chen, Z.4
  • 4
    • 2942590769 scopus 로고    scopus 로고
    • A foundational approach to mining itemset utilities from databases
    • Florida, in
    • H. Yao, H. J. Hamilton and C. J. Butz, A foundational approach to mining itemset utilities from databases, in Proc. 4th SIAM Int. Conf. Data Mining (Florida, in 2004), pp. 482-486.
    • (2004) Proc. 4th SIAM Int. Conf. Data Mining , pp. 482-486
    • Yao, H.1    Hamilton, H.J.2    Butz, C.J.3
  • 5
    • 33749250911 scopus 로고    scopus 로고
    • Mining itemset utilities from transaction databases
    • H. Yao and H. J. Hamilton, Mining itemset utilities from transaction databases, Data Knowl. Eng. 59 (3) (2006) 603-626.
    • (2006) Data Knowl. Eng. , vol.59 , Issue.3 , pp. 603-626
    • Yao, H.1    Hamilton, H.J.2
  • 8
    • 1842528329 scopus 로고    scopus 로고
    • The utility business model and the future of computing services
    • M. A. Rappa, The utility business model and the future of computing services, IBM Syst. J. Utility Comput. 43 (1) (2004) 32-52.
    • (2004) IBM Syst. J. Utility Comput , vol.43 , Issue.1 , pp. 32-52
    • Rappa, M.A.1
  • 18
    • 77952367550 scopus 로고    scopus 로고
    • Weighted association rule mining using weighted support and significance framework
    • Washington DC, Aug
    • F. Tao, F. Murtagh and M. Farid, Weighted association rule mining using weighted support and significance framework, in Proc. Conf. on Knowledge Discovery and Data mining (Washington DC, Aug. 2003), pp. 661-666.
    • (2003) Proc. Conf. on Knowledge Discovery and Data Mining , pp. 661-666
    • Tao, F.1    Murtagh, F.2    Farid, M.3
  • 19
    • 0345929952 scopus 로고    scopus 로고
    • Mining weighted association rules
    • S. Lu, H. Hu and F. Li, Mining weighted association rules, Intell. Data Anal. 5 (3) (2001) 211-225.
    • (2001) Intell. Data Anal. , vol.5 , Issue.3 , pp. 211-225
    • Lu, S.1    Hu, H.2    Li, F.3
  • 21
    • 0037865635 scopus 로고    scopus 로고
    • DualMiner: A Dual-pruning algorithm for itemsets with constraints
    • C. Bucila, J. Gehrke, D. Kifer and W. M. White. DualMiner: A Dual-pruning algorithm for itemsets with constraints, Data Mining Know. Discov. 7 (3) (2003) 241-272.
    • (2003) Data Mining Know. Discov. , vol.7 , Issue.3 , pp. 241-272
    • Bucila, C.1    Gehrke, J.2    Kifer, D.3    White, W.M.4
  • 23
    • 0035016447 scopus 로고    scopus 로고
    • Mining frequent itemsets with convertible constraints
    • Heidelberg, Germany
    • J. Pei, J. Han and L. V. S. Lakshmanan, Mining frequent itemsets with convertible constraints, in Proc. Int. Conf. on Data Engineering, (Heidelberg, Germany, 2001) pp. 433-443.
    • (2001) Proc. Int. Conf. on Data Engineering , pp. 433-443
    • Pei, J.1    Han, J.2    Lakshmanan, L.V.S.3
  • 24
    • 0030380606 scopus 로고    scopus 로고
    • What makes patterns interesting in knowledge discovery systems
    • A. Silberschatz and A. Tuzhilin, What makes patterns interesting in knowledge discovery systems, IEEE Trans. Know. Data Eng. 8 (6) (1996).
    • (1996) IEEE Trans. Know. Data Eng. , vol.8 , Issue.6
    • Silberschatz, A.1    Tuzhilin, A.2
  • 25
    • 36749081474 scopus 로고    scopus 로고
    • Risk analysis under partial prior information and nonmonotone utility functions
    • Lev. Utkin, Risk analysis under partial prior information and nonmonotone utility functions, J. Inform. Technol. Decis. Making 6 (4) (2007) 625-641.
    • (2007) J. Inform. Technol. Decis. Making , vol.6 , Issue.4 , pp. 625-641
    • Lev. Utkin1
  • 26
    • 36749003188 scopus 로고    scopus 로고
    • Integrating visualization and multiattribute utility theory for online product selection
    • C. Theetranont, P. Haddawy and D. Krairit, Integrating visualization and multiattribute utility theory for online product selection, J. Inform. Technol. Decis. Making 6 (4) (2007) 723-750.
    • (2007) J. Inform. Technol. Decis. Making , vol.6 , Issue.4 , pp. 723-750
    • Theetranont, C.1    Haddawy, P.2    Krairit, D.3
  • 27
    • 0037282574 scopus 로고    scopus 로고
    • Extracting share frequent itemsets with infrequent subsets
    • B. Barber and H. J. Hamilton, Extracting share frequent itemsets with infrequent subsets, Data Mining Know. Discov. 7 (2) (2003) 153-185.
    • (2003) Data Mining Know. Discov. , vol.7 , Issue.2 , pp. 153-185
    • Barber, B.1    Hamilton, H.J.2
  • 29
    • 34250863838 scopus 로고    scopus 로고
    • High-utility pattern mining: A method for discovery of highutility item sets
    • J. Hu and A. Mojsilovic, High-utility pattern mining: A method for discovery of highutility item sets, Pattern Recogn. 40 (11) (2007) 3317-3324.
    • (2007) Pattern Recogn , vol.40 , Issue.11 , pp. 3317-3324
    • Hu, J.1    Mojsilovic, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.