메뉴 건너뛰기




Volumn , Issue , 2006, Pages 122-131

Adaptive non-linear clustering in data streams

Author keywords

Data streams; Dimension reduction; Kernel methods; Stream clustering; Stream mining

Indexed keywords

DATA STREAMS; DIMENSION REDUCTION; LOW-DIMENSIONAL SPACE (LDS); STREAM CLUSTERING; STREAM MINING;

EID: 34547616634     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1183614.1183636     Document Type: Conference Paper
Times cited : (20)

References (25)
  • 1
    • 0036360689 scopus 로고    scopus 로고
    • Hierarchical subspace sampling: A unified framework for high dimensional data reduction, selectivity estimation and nearest neighbor search
    • New York, NY, USA, ACM Press
    • C. C. Aggarwal. Hierarchical subspace sampling: a unified framework for high dimensional data reduction, selectivity estimation and nearest neighbor search. In Proceedings of the 2002 ACM SIGMOD Intl. Conf. on Management of data, pages 452-463, New York, NY, USA, 2002. ACM Press.
    • (2002) Proceedings of the 2002 ACM SIGMOD Intl. Conf. on Management of data , pp. 452-463
    • Aggarwal, C.C.1
  • 4
    • 85136074496 scopus 로고    scopus 로고
    • A framework for projected clustering of high dimensional data streams
    • C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework for projected clustering of high dimensional data streams. In VLDB, pages 852-863, 2004.
    • (2004) VLDB , pp. 852-863
    • Aggarwal, C.C.1    Han, J.2    Wang, J.3    Yu, P.S.4
  • 6
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • R. Agrawal, J. Gehrke, D. Gunopulos, and R Raghavan. Automatic subspace clustering of high dimensional data for data mining applications. In SIGMOD Conference, pages 94-105, 1998.
    • (1998) SIGMOD Conference , pp. 94-105
    • Agrawal, R.1    Gehrke, J.2    Gunopulos, D.3    Raghavan, R.4
  • 7
    • 9444224602 scopus 로고    scopus 로고
    • Spectral clustering and kernel pca are learning eigenfunctions
    • CIRANO Working Papers 2003s-19, May, available at
    • Y. Bengio, R Vincent, and J.-F. Paiement. Spectral clustering and kernel pca are learning eigenfunctions. CIRANO Working Papers 2003s-19, CIRANO, May 2003. available at http://ideas.repec.org/p/cir/cirwor/2003s-19.html.
    • (2003) CIRANO
    • Bengio, Y.1    Vincent, R.2    Paiement, J.-F.3
  • 10
    • 0000071395 scopus 로고
    • Some distance properties of latent root and vector methods used in multivariate analysis
    • J. C. Gower. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika, 53(3-4):325-338, 1966.
    • (1966) Biometrika , vol.53 , Issue.3-4 , pp. 325-338
    • Gower, J.C.1
  • 11
    • 0033473005 scopus 로고    scopus 로고
    • Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance
    • J. C. Gower. Analysis of distance for structured multivariate data and extensions to multivariate analysis of variance. Royal Statistical Society: Series C (Applied Statistics), 48(4):505 - 519, 1999.
    • (1999) Royal Statistical Society: Series C (Applied Statistics) , vol.48 , Issue.4 , pp. 505-519
    • Gower, J.C.1
  • 12
    • 0000457927 scopus 로고
    • Adding a point to vector diagrams in multivariate analysis
    • J. C. Gower and W. J. Krzanowski. Adding a point to vector diagrams in multivariate analysis. Biometrika, 1968.
    • (1968) Biometrika
    • Gower, J.C.1    Krzanowski, W.J.2
  • 21
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eigenvalue problem
    • B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998.
    • (1998) Neural Computation , vol.10 , pp. 1299-1319
    • Schölkopf, B.1    Smola, A.2    Müller, K.-R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.